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Preface

Ever since the emergence of Alexa, Google Assistant, and Siri, voice recognition technologies

have been seamlessly integrated into our everyday lives. This innovation not only liberates our hands

when inputting a new address into a navigation system but also has the potential to reduce air traffic

controllers’ (ATCos) workload and enhance air traffic management (ATM) safety.

Although the idea of using data links has been around for more than 30 years, voice

communication between ATCos and pilots using radio equipment is still the main communication

channel used in air traffic control. ATCos issue verbal commands to the cockpit crew.

Whenever the information from voice communication has to be digitized, ATCos are burdened

to manually enter the information, although it was already uttered. On the one hand, Automatic

Speech Recognition (ASR) transforms the analog voice signal into a spoken sequence of words, e.g.,

“speed bird four eight six descend flight level one two zero”.

On the other hand, Automatic Speech Understanding extracts the meaning from the above

sequence of words, e.g., that the aircraft with the callsign BAW486 should descend to roughly twelve

thousand feet. The different approaches in Europe and in the US to modeling spoken words and

semantics in machine-readable form are discussed in the article by Chen et al. We can also model the

above sequence of words, for example, as

“speedbird 4 8 6 descend flight level 1 2 0”

where “speed bird” is written in one word, and the numbers are transcribed as digits instead of

words.

When the formal problems of representing lexical, syntactic, and semantic information are

solved, the spoken callsigns still need to be extracted from a verbal transmission. This challenge

is addressed in the article by Garcia et al. The authors do not only address the extraction of callsigns

spoken by ATCos in a lab environment but also by pilots, even in a noisy operational environment,

i.e., from the cockpit, when pilots with different accents are flying in Spanish airspace. Highlighting

the displayed aircraft callsign of the flight that is currently transmitting via radio reduces the

workload of air traffic controllers in searching for the flight on the radar display.

Callsign highlighting is also addressed in the article by Kasttet et al. The above-mentioned

callsign BAW486 can be spoken as “speed bird four eight six”, “british airways four eight six”, or

“speed bird forty eight six”. It can be abbreviated as “speed bird six” or “four eighty six”. The

output of automatic speech recognition is seldom perfect. For BAW486, it could also be “speed four

eight six” or “speed bird five height six”. Therefore, the authors rely on the available Automatic

Dependent Surveillance-Broadcast (ADS-B) data, which contain a list of callsigns currently within

the area for which the ATCo is responsible. The most similar callsign is extracted by a Fuzzy string

matching algorithm, allowing for callsign extraction rates better than 95%. A similar string matching

algorithm was also used in three articles by Ohneiser et al., Kleinert et al., and Ahrenhold et al.

Another application of Automatic Speech Recognition and Understanding (ASRU) is the

pre-filling of radar labels with information extracted from ATCo voice transmissions, for example, for

the Vienna approach control. This not only means that spoken callsigns need to be extracted by the

system but also that the spoken commands with the associated values, qualifiers, and conditions need

to be extracted too. The article by Ahrenhold et al. quantifies the effects of ASRU support in terms

of increasing safety and human performance. An implemented ASRU system was validated within

a human-in-the-loop environment by ATCos in different traffic density scenarios. In the baseline

condition, ATCos performed the filling of radar labels by entering the voice transmission content
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manually with a mouse and keyboard into the aircraft radar label. In the proposed solution condition,

ATCos were supported by ASRU, which, most of the time, automatically pre-filled the information

into the radar labels. The solution condition led to a reduction in the clicking time the ATCos needed

to maintain the radar labels by a factor of more than 30. The application was validated by the SESAR 3

JU (Single European Sky ATM Research Programme Joint Undertaking) and achieved a technological

readiness level of 6 (TRL6).

A similar application is presented in the article by Kleinert et al. Here, ASRU is integrated

into an Advanced Surface Movement Guidance and Control System (A-SMGCS). ASRU provides the

A-SMGCS with the ability to automatically adapt the apron controller route planning based on voice

communication. This relieves the controllers of the burden of manually entering a lot of information

into the A-SMGCS. Validations with the ASRU-enhanced A-SMGCS were performed in the complex

apron environment of Frankfurt airport with 14 apron controllers in a human-in-the-loop simulation

in the summer of 2022. This integration significantly reduced the workload of the controllers and

increased safety as well as the overall performance.

The article by Ohneiser et al. addresses a lower technology readiness level. Ten ATCos from

Lithuania and Austria participated in a human-in-the-loop simulation of DLR to validate ASRU

support within a prototypic multiple remote tower controller working position. The ASRU supports

ATCos by (1) highlighting recognized callsigns, (2) inputting recognized commands from ATCo voice

transmissions in electronic flight strips, (3) offering corrections to ASRU output, (4) automatically

accepting ASRU output, and (5) feeding the digital air traffic control system. The presented results

motivate the technology to be brought to a higher technology readiness level, which is also confirmed

by subjective feedback from questionnaires and objective measurement of workload reduction based

on a performed secondary task.

Most of the results of ASRU applications still result from the lab environment, which

requires simulations with ATCos and especially the integration of simulation pilots. The article

by Zuluaga-Gómez and Prasad et al. presents a virtual simulation pilot agent to reduce the

number of needed simulation pilots, especially in the context of ATCo training. The agent also

includes a text-to-speech engine and, therefore, automatically generates the pilots’ readbacks.

The framework employs state-of-the-art artificial intelligence-based tools such as Wav2Vec 2.0,

Conformer, Bidirectional Encoder Representations from Transformers (BERT), and the Tacotron

speech synthesis model.

Voice communication between ATCos and pilots is not always split into different voice streams,

especially when the push-to-talk (PTT) signal is not available. Khalil et al. present a pipeline that

deploys (1) speech activity detection to identify speech segments, (2) a speech-to-text system to

generate transcriptions of audio segments, (3) a text-based speaker role classification to detect if

the ATCo or pilot is the speaker, and (4) unsupervised speaker clustering to create a cluster of each

individual pilot speaker from the obtained speech utterances.

The development of machine learning-based ASR systems demands large-scale annotated

datasets, which are currently lacking in the field. The ATCO2 project aimed to develop a unique

platform to collect, preprocess, and transcribe large amounts of ATC audio data from airspace

in real time. The article by Zuluaga-Gómez and Nigmatulina et al. reviews (1) robust ASR, (2)

natural language processing, (3) English language identification, and (4) contextual ASR biasing with

surveillance data.

The work of Park and Na investigates on-board ASR within small unmanned aerial vehicles

(UAV), where computer resources are very limited. Therefore, the authors propose that variable

Hidden Markov-Models (HMM) are sufficient, although it is known that Deep Neural Networks
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(DNN) outperform HMM in complex application domains, e.g., noisy environments and in instances

with complex unstructured grammar. They show that the recognition speed of the used HMM is 100

times faster than the speed of the used DNN.

Xu et al. show that ATC speech data can also be used for purposes in which the recognition

of words or even ATC concepts is not relevant. They join speech and gaze data from a laboratory

environment to detect fatigue based on the entropy weight method. The authors compare automatic

fatigue state recognition with controller self-ratings on the Karolinska Sleepiness Scale and achieve

an accuracy rate of 86%.

Bringing ASRU technology from the lab environment to the ops room requires a safety

assessment. A safety assessment process consists of defining design requirements for ASRU

technology application in normal, abnormal, and degraded modes of ATC operations.

Pinska-Chauvin et al. identified eight functional hazards based on the analysis of four use cases.

The safety assessment was supported by top-down and bottom-up modeling and analysis of the

causes of hazards to derive system design requirements for the purpose of mitigating hazards. The

assessment of how well the specified design requirements were achieved was supported by evidence

generated from two real-time simulations for pre-filling radar labels and callsign highlighting

with pre-industrial ASRU prototypes in approach and en-route operational environments. It was

demonstrated that the use of ASRU does not increase safety risks. This article has already been

selected for the cover of the November 2023 issue of the MDPI Aerospace journal.

Aerospace’s Special Issue on “Automatic Speech Recognition and Understanding in Air Traffic

Management” contains 12 articles authored by 54 different authors. Those authors work for 23

different institutions, i.e., research organizations, universities, non-profit associations, speech

recognition and understanding institutions, air navigation service providers, airports, and ATM

system suppliers. The authors come from 13 countries on four continents. Only the continents of

Australia and Antarctica are missing. This shows the worldwide interest in deeply analyzing the

benefits and drawbacks of ASRU in ATM as well as the process of transferring this technology to

industry for operational use in aviation.

Hartmut Helmke and Oliver Ohneiser

Editors
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matthias.kleinert@dlr.de (M.K.)

* Correspondence: chen@mitre.org

Abstract: As researchers around the globe develop applications for the use of Automatic Speech
Recognition and Understanding (ASRU) in the Air Traffic Management (ATM) domain, Air Traffic
Control (ATC) language ontologies will play a critical role in enabling research collaboration. The
MITRE Corporation (MITRE) and the German Aerospace Center (DLR), having independently
developed ATC language ontologies for specific applications, recently compared these ontologies
to identify opportunities for improvement and harmonization. This paper extends the topic in two
ways. First, this paper describes the specific ways in which ontologies facilitate the sharing of and
collaboration on data, models, algorithms, metrics, and applications in the ATM domain. Second,
this paper provides comparative analysis of word frequencies in ATC speech in the United States and
Europe to illustrate that, whereas methods and tools for evaluating ASRU applications can be shared
across researchers, the specific models would not work well between regions due to differences in the
underlying corpus data.

Keywords: automatic speech recognition; natural language understanding; semantic interpretation;
air traffic control; radio communications; intent representation; semantic ontology; performance metrics

1. Introduction
1.1. Broad Context of the Study

For more than a decade, researchers in the United States and Europe have been
developing and proving the benefit of Automatic Speech Recognition (ASR) applications
in the Air Traffic Management (ATM) domain. In the United States, in support of the
Federal Aviation Administration (FAA), the MITRE Corporation (MITRE) has developed
capabilities to use Air Traffic Controller (ATCo)–pilot voice communication information for
operational purposes, such as notifying ATCos of unsafe situations or analyzing operations
to identify opportunities for safety or efficiency improvements. In Europe, as part of the
Single European Sky ATM Research (SESAR) program, the German Aerospace Center
(DLR) has led the development and testing of prototypic applications to enhance ATCo
automation interactions, reduce ATCo workload, and identify safety issues in real time.
Both MITRE [1] and DLR [2] have investigated the potential for automatic detection of
readback errors, which are pilot errors in reading back ATCo instructions.

Key to most applications of ASR is the semantic meaning of the words spoken and
transcribed, specifically in the context of the application in which the information will be
used. Thus, we use the term Automatic Speech Recognition and Understanding (ASRU)
to describe the speech-to-text and the text-to-meaning processes as one. ASRU for the Air
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Traffic Control (ATC) domain needs to transcribe domain-specific words and phrases and
then interpret their ATC meaning. For example, “lufthansa three twenty one one seventy
knots until four contact tower eighteen four five” needs to be understood to capture the
flight’s callsign (DLH321) and the instructions it received (speed 170 knots until four miles
from the runway; contact the tower on this radio frequency 118.450).

To represent the information contained in the speech—both the words and their se-
mantic meaning in the ATC context—MITRE and European stakeholders, led by DLR,
independently developed ATC language ontologies in support of ATM application devel-
opment. A common ontology, used in both Europe and the US, could enable better sharing
and reuse of data, models, algorithms, and software between the US and Europe.

In a recent paper [3], we described our collaboration to compare ontologies and identify
opportunities for improvement and harmonization. This paper expands on that topic
to discuss the impact of the ontology on future research and development collaboration,
describing several ways that an ATC ontology is critical to facilitating collaboration between
researchers and to appropriately evaluating ASRU applications in the ATM domain. This
paper also examines the word-level differences between United States and European ATC
speech to provide quantitative understanding of the corpus data that feed the ASRU models,
informing their potential cross-use between regions. The analysis shows that whereas the
methods and tools for developing and measuring ASRU performance can be shared across
regions (e.g., between the US and Europe), the specific models built for the different regions
would likely not work well across regions.

1.2. Structure of the Paper

This paper expands on the ontology study described in [3]. The following sections are
organized as follows. Section 1.3 summarizes the uses of ASRU in ATC to date. Section 1.4
lays out the levels of an ontology in the context of the ATC domain. Section 2 presents two
different concrete instantiations of ATC ontology and recalls examples presented in [3] that
illustrate representations of ATC semantics using these ontologies. Section 3 describes the
value of ATC ontology in facilitating collaboration between research groups and presents
specific applications and the semantic representations they rely on. Section 4 presents a
quantitative comparison of ATC speech at the word level between the United States and
Europe. Finally, Section 5 completes the paper with our conclusions and next steps.

1.3. Background

Voice communications are an essential part of ATC because they are the primary means
of communicating intention, situation awareness, and environmental context. Over the
last decade, researchers have invested tremendous effort into advancing the accuracy and
sophistication of in-domain ASR and Natural Language Understanding (NLU) capabilities
to enable human–machine teaming that improves aviation safety and efficiency [4].

Early applications of ASR and NLU focused on simulation pilots for high-fidelity
controller training simulators because these applications were in controlled environments
with well-defined phraseology and a limited set of speakers [5–7]. Other examples for
replacing pseudo-pilots in training environments are from the FAA [8,9], DLR [10], and
DFS [11]. Later applications in lab settings expanded to simulation pilots for human-in-
the-loop simulations in ATM research measuring workload [12]. With the adoption of
electronic flight strips in ATC facilities, Helmke et al. [13] applied ASRU to demonstrate
the effectiveness of speech assistants in reducing controller workload and improving
efficiency. Prototypes demonstrating the use of ASRU to enhance safety in live operations
also emerged. ASRU can support the detection of anomalous trajectories [14]. It can
also support the detection of closed runway operations and wrong surface operations
in the tower domain [15]. The efficacy of using ASRU to automatically detect readback
discrepancies was analyzed in the US [1] and in Europe [2]. A safety monitoring framework
that applied ASR and deep learning to flight conformance monitoring and conflict detection
has been proposed by [16]. The growing prevalence of uncrewed aerial vehicles has also led

2
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to use cases in autonomous piloting. Text-to-speech and NLP can enable communications
between human controllers and autonomous artificial intelligence pilots as advocated
by [17]. Finally, the accuracy and robustness achieved by mature in-domain ASR has
enabled mining of large-scale ATC communication recordings for post-operational analyses.
Chen et al. [18] measured approach procedure usage across the U.S. National Airspace
System using automatically transcribed radio communications in post analyses. Similarly,
reference [19] assessed the quantity of pilot weather reports delivered over the radio against
the quantity of pilot reports manually filed during the same time frame.

A common theme across all these applications is the use of a language understanding
layer that distills and disambiguates semantic meaning from the text transcripts generated
by ASR. Although there is variability in the semantic structures and concepts relevant to
each use case, almost all extracted semantics relate to the representation of controller and
pilot intent or situation awareness. Currently, research groups in the US and Europe create
and maintain their own semantic taxonomies or ontologies to define the elements and
relationships that represent intentions or situational context relevant to their specific use
cases. These elements usually cover ATC concepts such as aircraft callsigns, command
types, and command values in a structured human-readable and machine-readable formats.

The European ontology was defined by fourteen European partners from the ATM
industry as well as by air navigation service providers (ANSPs) funded by SESAR 2020 [20].
The ontology was refined through use by different projects, such as STARFiSH [21], “HMI
Interaction Modes for Airport Tower” [22,23] in the tower environment, “HMI Interaction
modes for approach control” [24], and HAAWAII [25], which expanded the ontology to
support pilot utterances [2].

The MITRE ontology was developed and matured over several years, with many
contributing projects. Our earliest ontology was created for the simulation pilot component
of an enroute ATCo trainer [5]. It was later expanded to incorporate tower domain phrase-
ology for projects such as the Closed Runway Operations Prevention Device [15]. More
recently, to support the varied use cases required of our large-scale, post-processing capa-
bility [18], the ontology was expanded to cover most of the phraseology for the standard
operations documented in [26]. With each iteration we made it more robust and flexible to
cover regional phraseology variations across the operational domains, i.e., tower, terminal,
and enroute airspace.

1.4. What We Mean by Ontology

An ontology in the context of this paper is a collection of rules, entities, attributes,
and relationships that define how language meaning is represented in a particular domain.
An ontology introduces structure to ASRU by distinguishing between the four levels of
language communication—lexical, syntactical, semantic, and conceptual [27]—and defining
meaning representation within these levels.

The lexical level deals with words and distinguishes between synonyms—words with
the same meaning that are spoken differently. For example, the words nine and niner denote
the same numerical value in the ATC domain. Similarly, speed bird and speedbird signify the
same commercial airline. The ontology rules at this level specify the universe of words (i.e.,
the vocabulary) that may appear in ATC radio communications.

The syntactical level deals with grammar and distinguishes between similar meaning
phrases that are worded differently. For example, the phrases runway two seven left cleared to
land, and cleared to land two seven left are syntactically different because they have different
word ordering; however, they have the same meaning, which is to convey clearance to land
on runway two seven left.

The semantic representation level deals with meaning despite differences in vocabu-
lary or grammar that do not affect the meaning of the communication. The ontology rules
at this level may deal with meaning that is explicitly spoken as well as meaning that is
implied. Both phrases from the syntactical level example may be mapped to an agreed form

3
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such as CTL RWY 27L or RW27L CLEARED_TO_LAND. Later in this paper, we discuss
how these semantics are represented in the European and MITRE ontologies.

The conceptual level deals with a higher level of understanding that goes beyond the
semantic level. It captures the bigger picture, which in the ATC domain can be bigger than
the sum of the individual radio transmissions. An example of an event at the conceptual
level is the concept of an aircraft being in the arrival phase of flight. For some applications,
this is more important than knowing the particular set of altitude and speed reductions an
ATCo issued. Another example is the speech associated with a go-around, which might
involve a back-and-forth discussion between an ATCo and pilot followed by a series of
ATCo instructions.

In this paper, the ontology instantiations we describe primarily address the lexical and
semantic level described above. However, we believe ontologies can and should expand to
cover any information that is relevant to the application using language interpretation.

2. A Comparison of Two ATC Ontologies

This section recaps the comparison of US and European ATC ontology instantiations
described in [3].

2.1. Lexical Level

At the lexical level, MITRE’s ontology specifies that both speech and non-speech
sounds during ATC radio communications should be captured in the transcription. Further-
more, the transcription should closely represent the sounds present in the audio without
additional annotation or meaning inference. This means speaker hesitation sounds such as
“um” and “uh”, partially spoken words, foreign words such as “bonjour” or “ciao”, and
initialisms such as “n d b” and “i l s” are transcribed as they sound. These rules were based
on best practices in automatic speech recognition training corpus creation.

The European ontology at the lexical level requires that both speech and non-speech
sounds be annotated in the transcription. Special annotation is associated with non-English
words spoken in a radio transmission to indicate non-English content. Domain-specific
acronyms and initialisms such as “NDB” and ILS” are transcribed as words in the vocab-
ulary. Special handling is associated with domain-specific synonyms such as “nine” and
“niner”, which are transcribed to a single lexical representation, “nine”. Both ontologies
stick to the standard 26 letters in the English alphabet, i.e., “a” to “z” in lower- and upper-
case form. Diacritical marks such as the umlaut “ä” in German or the acute accent “é” in
French are not supported.

The differences that we observed at the word level can be summed up as fitting into
the following categories:

• Identical words with different spellings (e.g., juliett versus juliet).
• How initialisms are handled (e.g., ILS versus i l s).
• Words with similar meaning and different pronunciations and spelling (e.g., nine

versus niner).
• Words absent from one ontology or the other (e.g., the word altimeter does not occur

in European ATC communications and the corresponding ICAO term QNH is absent
from US ATC communications) [28].

• Whether speech disfluencies and coarticulation are captured at the word level (e.g.,
cleartalan versus cleared to land).

• Words not represented in the US English language (e.g., the German word wiederhoeren
for a farewell).

These differences can have an impact on ASR speed and accuracy performance and
on the end user or downstream software application.

2.2. Semantic Level

At the semantic level, MITRE’s ontology (SLUS) specifies a set of entities, attributes, and
relationships that capture meaning at the command or clearance level. Figure 1 illustrates

4



Aerospace 2023, 10, 526

the ontology of SLUS in graph format. At the highest level, SLUS starts with a concept called
Command Interpretation that represents an instruction, and it has a mandatory attribute
called Command Type. The Command Type attribute declares the type of the instruction, such
as an aircraft maneuver such as “climb” or a clearance to fly a procedure such as “cleared
ILS two one approach”.
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Figure 1. Graphical representation of SLUS ontology.

Each Command Interpretation can have zero or more child concepts called Qualifiers
and Parameters. Both characterize, modify, and/or add values to the instruction. Qualifiers
disambiguate or characterize Parameters by representing value units that are lexically
present in the transcript, e.g., “flight level”, “heading”, “knots”, etc. Qualifiers can be nested
to represent deeper, hierarchical relationships. For example, to represent the condition
“until the dulles VOR”, the highest-level Qualifier would represent the preposition “until”,
its child Qualifier would represent the waypoint type “VOR”, and its child Parameter would
represent the name of the waypoint “dulles”.

Parameters represent the value payloads for instructions that require a value, such as a
heading (in degree) for a turn instruction or an altitude (in feet or flight level) for a climb
instruction. A Parameter may exist without a Qualifier parent if the format of the Parameter
value or the instruction’s command type makes the Parameter inherently unambiguous. For
example, in the instruction “climb three four zero”, the command type “climb” allows us
to infer that an altitude must be represented in the Parameter and the value format in three
digits allows us to infer that the altitude is in flight level even though a unit is not explicitly
stated. Figure 2 illustrates the SLUS ontology as a block diagram for comparison with the
semantic level of the European ontology in Figure 3.
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Figure 2. Block diagram of SLUS ontology; optional elements in orange.
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In comparison, Figure 3 illustrates the semantic level of the European ontology (SLEU).
At its highest level, SLEU starts with a concept called Instruction, i.e., a mandatory Callsign,
a mandatory Command, and optional Conditions. If the Callsign cannot be extracted from
the transmission, the Callsign is “NO_CALLSIGN”. A Command concept always has a Type
attribute that declares the type of instruction represented. When no Command is found in
a transcript, a Command concept with Type “NO_CONCEPT” is created. Depending on
the Type, no Value or one or more Values can follow. If a Value is available, the optional
attributes Unit and Qualifier are possible. The optional Condition concept can be present for
any Type and more than one may be associated with one Command.

Type can consist of a subtype, as illustrated by the command CLEARED ILS. The
Speaker attribute can have the values “ATCO” or “PILOT”. If not specified, it is ATCO or
can be derived from additional available context information. The Reason attribute is only
relevant for pilot transmissions. Then the values “REQ=REQUEST”, “REP=REPORTING”,
or an empty value are possible. The empty value, i.e., the default value, in most cases
contains a pilot’s readback. The Reason attribute is motivated by the examples in Table 1.

Table 1. Examples of ontology representations on ATC communications transcripts.

Lexical
Representation

eurowings 1 3 9 alpha cleared I L S approach oh 8 right auf wiedersehen

MITRE Ontology Word-Level eurowings uh one three niner alfa cleared i l s approach oh eight right
auf wiedersehen

European Ontology Word-Level euro wings [hes] one three nine alfa cleared ILS approach [spk] O
eight right [NE German] auf wiedersehen [/NE]

Controller
Transmission

november three mike victor cleared I L S runway two one approach

SLUS
Callsign: {N, 3MV, GA},
Cleared: {21, ILS}

SLEU N123MV (CLEARED ILS) 21

Callsign and Unit
Inference

fedex five eighty two heavy maintain four thousand three hundred

SLUS
Callsign: {FDX, 582, H, Commercial},
Maintain: {Feet, 4300}

SLEU FDX482 (MAINTAIN ALTITUDE) 4300 none

Transmission with
Multiple

Commands

good day american seven twenty six descend three thousand feet turn right heading three four zero

SLUS

Callsign: {AAL, 726, Commercial},
Courtesy,
Descend: {3000, Feet},
TurnRight: {340, Heading}

SLEU

AAL726 GREETING,
AAL726 DESCEND 3000 ft,
AAL726 HEADING 340 RIGHT

Transmissions
without Callsign

fly zero four zero cleared I L S approach

SLUS
Fly: {040, Heading},
Cleared: {ILS}

SLEU
NO_CALLSIGN HEADING 040 none,
NO_CALLSIGN (CLEARED ILS) none

lufthansa one two charlie go ahead
SLUS Callsign: {DLH, 12C, Commercial}
SLEU DLH12C NO_CONCEPT
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Table 1. Cont.

Transmissions with
more than one

Callsign

lufthansa six alfa charlie descend one eight zero break break speed bird six nine one turn right heading zero
nine five cleared I L S runway three four right

SLUS

Callsign: {DLH, 6AC, Commercial},
Descend: {180, FL},
Callsign: {BAW, 691, Commercial},
TurnRight: {95, Heading}
Cleared: {34R, ILS}

SLEU

DLH6AC DESCEND 180 none,
BAW691 HEADING 095 RIGHT,
BAW691 (CLEARED ILS) 34R

stand by first speed bird sixty nine thirteen turn right by ten degrees

SLUS
Callsign: {BAW, 6913, Commercial},
TurnRight: {10, Degrees}

SLEU
NO_CALLSIGN CALL_YOU_BACK,
BAW6913 TURN_BY 10 RIGHT

Altitude with
Limiting

Condition

maintain four thousand feet until established
SLUS Maintain: {4000, Feet}
SLEU (MAINTAIN ALTITUDE) 4000 ft (UNTIL ESTABLISHED)

Instructions with
Position-Based

Conditions

at dart two you are cleared I L S runway two one left
SLUS Cleared: {21L, ILS}
SLEU NO_CALLSIGN (CLEARED ILS) 21L (WHEN PASSING DART2)

leaving baggins descend and maintain one four thousand feet
SLUS Descend: {14,000, Feet}
SLEU NO_CALLSIGN DESCEND 14,000 ft (WHEN PASSING BGGNS)

Instructions with
Advisories

maintain two fifty knots for traffic
SLUS Maintain: {250, Knots, for traffic}

SLEU
NO_CALLSIGN (MAINTAIN SPEED) 250 kt,
NO_CALLSIGN (INFORMATION TRAFFIC) none

traffic twelve o’clock two miles same direction and let’s see the helicopter
SLUS Traffic: {Distance: 2, OClock: 12, TrafficType: helicopter}
SLEU NO_CALLSIGN (INFORMATION TRAFFIC)

caution wake turbulence one zero miles in trail of a heavy boeing seven eighty seven we’ll be going into this
[unk]

SLUS Wake: ()
SLEU (CAUTION WAKE_TURBULENCE)

Pilot
Transmission as

Readback

descend flight level one seven zero silver speed
SLUS Descend: {170, FL}
SLEU NO_CALLSIGN PILOT DESCEND 170 FL

Pilot
Transmission as

Report

speed bird two one alfa flight level two one two descend flight level one seven zero inbound dexon

SLUS
Callsign: {BAW, 21A, Commercial}
Descend: {170, FL}

SLEU

BAW21A PILOT REP ALTITUDE 212 FL
BAW21A PILOT REP DESCEND 170 FL
BAW21A PILOT REP DIRECT_TO DEXON none

Correction of
Instruction

speed bird one one descend level six correction altitude six thousand feet

SLUS
Callsign: {BAW, 11, Commercial},
Descend: {6000, Feet},

SLEU
BAW11 CORRECTION
BAW11 DESCEND 6000 ft

speed bird one one descend level six correction six thousand feet disregard turn left heading three two five
degrees

SLUS

Callsign: {BAW, 11, Commercial}
Descend: {6000, Feet}
TurnLeft: {325, Heading}

SLEU
BAW11 DISREGARD
BAW11 HEADING 325 LEFT
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The differences that we observed between SLUS and SLEU at the semantic level can be
summed up as fitting into the following categories:

• How callsigns are represented.
• The extent of and representation of inferred and implied information in the semantic

representations.
• The level of detail represented for advisory-type transmissions (e.g., traffic advisories,

pilot call-in status information).
• Which less-common ATCo instructions have defined representations.
• How ambiguous ATCo instructions are represented.

For a detailed comparison of the semantic-level ontology overlap between the MITRE
and European ontology instantiations, refer to Tables A1–A6 in the Appendix A.

2.3. Examples of Ontology Representations from ATC Communications

In reference [3], we presented several examples of word-level and semantic interpreta-
tion representations as defined by the European and MITRE ontology instantiations. We
summarize them again below in Table 1 to illustrate the similarities and differences between
the two ontology instantiations.

2.4. Quantifying the Differences

MITRE and DLR each exchanged 100 transmissions, with transcripts and semantic
annotations, from the terminal area of a major US airport and a European hub airport.
The US transcripts and annotations were manually transformed into the European format
and vice versa. We assessed the word-level differences at the transcript level in terms of
Levenshtein distance [29].

Out of 1554 total words in transmissions, 187 of them required modification to adhere
to the other party’s ontology, i.e., 12.0% of words were modified through substitution (89),
deletion (35), and insertion (63). We omit uppercase to lowercase transformation from this
measure. Figure 4 shows a sample transcript and its transformation.
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Figure 4. SLEU structure for ambiguous instructions. Word-level difference between European (first
row) and US (second row) transcripts resulting in a Levenshtein distance of 5.

In the following bullets, we list and explain some of the most often occurring cases
from the 200 transcripts that are represented differently at the word level in the MITRE and
European ontologies as sketched in Section 2.3:

• Separation and combination of words/letters

# ”ILS” vs. “i l s” (23 times)
# “southwest”, etc., vs. “south west”, etc. (19 times)

• Different spellings

# “nine” vs. “niner” (9 times)
# “juliett” vs. “juliet” (6 times)
# “OK” vs. “okay” (4 times)

• Special sounds and their notation

# “[unk]” vs. no transcription (7 times)
# “[hes]” vs. “uh” (7 times)

Table 2, taken from [3], shows the overlap in commands represented by the MITRE
and European ontologies at the semantic level after analyzing 121 ATCo instructions
from Europe and 120 from the US. DESCEND in SLEU corresponds to Descend in SLUS.
MAINTAIN ALTITUDE with Value and Unit in SLEU corresponds to Maintain with the
US Qualifier feet or FL. The Cleared ILS Z in SLUS now corresponds to CLEARED ILSZ in
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SLEU. GREETING and FAREWELL in SLEU correspond to Courtesy in SLUS. SLUS’s Radar
Service Terminated is currently not modelled in SLEU. In contrast, SLUS does not model
SLEU’s CALL_ YOU_BACK command type.

Table 2. Percentage of overlap based on analysis of 241 ATCo instructions.

Type of Semantic Comparison Overlap of Concepts
Concept present in both ontologies before adaptation 82%
Corresponding concept after small adjustments 95%
Achievable match with existing model structures 100%

3. Impact of Ontology on Collaboration

Up to this point in the paper, we have described and compared two ontology in-
stantiations that define simplifying meaning representations for ATC communications. In
the remainder of this paper, we will describe how these ontologies assist collaboration,
highlighting their benefits and shortfalls. Specifically, we examine the extent to which
data, models, algorithms, and applications can be shared between research groups given
operational and geographic differences and how the differences manifested in ATC com-
munications can be bridged with the help of ontologies.

3.1. Data Sharing
3.1.1. Text Data

In a perfect world, there would exist only one ground truth transcript for a segment of
speech audio. However, as the ontology differences summarized above show, even when
there is agreement on what was spoken, lexical representation of the spoken content can
still differ. Although these differences in representation may seem superficial, they leave
lasting impressions on models created using these lexical representations and can lead to
artificially inflated error metrics if overlooked and in some cases can increase the number
of actual errors.

For example, consider the two nominal examples in Table 3, where the original ground
truth transcripts are transcribed according to the European ontology rules and the auto-
matically transcribed text is generated by a speech recognizer that has modeled language
following the MITRE ontology rules.

Table 3. Nominal examples of transcription error without lexical translation.

Ground Truth Transcript Automatically Transcribed Text
Example 1 good day american seven twenty six

descend three thousand feet turn right
heading three four zero

good day american seven twenty six
descend four thousand feet turn right
heading three zero

Example 2 cleared ILS three four cleared i l s three five

In Example 1, when the automatically transcribed text is assessed against the ground
truth transcript using word error rate (WER), a common metric for assessing speech
recognition accuracy, the WER evaluates to 12.5% because of one substitution error (three
by four) and one deletion error (four is missing) against a total of 16 words in the ground
truth. This WER is reasonable because in this scenario the ground truth and the speech
recognizer have the same lexical representation for all words in the transcript.

In contrast, in Example 2, the three errors (1 substitution and 2 insertions) resulting
from differences in lexical representation (“i l s” instead of “ILS”) compound the actual
substitution error (“four” by “five”) and results in a WER of 100%. In this scenario, lexical
differences artificially inflate the true WER from 25% to 100%. Furthermore, if the semantic
parser does use the same lexical representation, the difference can lead to parse errors,
which in turn lead to semantic errors.

Thus, a mechanism for translation between different lexical representations is often
required when sharing raw text data. By explicitly defining the rules for lexical represen-
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tation, ontologies play a critical role in highlighting what is required of the translation
process and facilitate its design without extensive data analysis and exploration. Because
WER is an indicator of lexical representation mismatch, it can be repurposed to measure
the effectiveness of the translation process.

3.1.2. Semantic Annotations

Semantic representation differences are often much more obvious than lexical repre-
sentation differences but they still require the same, if not more, attention to translation.
The complexities of semantic representation make ontologies even more critical to the
translation design process. Though an exhaustive comparison of ontology instantiations
may seem daunting, it is still much easier than an exhaustive search for syntactic and
semantic samples in raw text data!

As in the case with lexical translation, a measure of semantic representation mismatch
is needed to assess effectiveness of the translation process. We outline below our simple
scheme for measuring semantic translation accuracy that is independent of semantic con-
cept type or subcomponents and treats all semantic components with equal importance.
These metrics can be used to compare semantic labels that have been mapped from one
ontology representation to another and then back again to assess semantic content loss
from the conversion. Table 4 lists definitions that are the building blocks for the accuracy
metrics, and Table 5 defines the metrics and their formulas.

Table 4. Definition of basic element for accuracy calculation.

Name Definition

True
Positive (TP)

TP is the total number of True Positives: The
concept is present and correctly and fully
(including all subcomponents) detected

False
Positive (FP)

FP is the total number of False Positives: The
concept is incorrectly detected, i.e., either the
concept is not present at all or one or more of

its subcomponents are incorrect
True

Negative (TN)
TN is the total number of True Negatives: The

concept is correctly not detected

False
Negative (FN)

FN is the total number of False Negatives: A
concept is not detected when it should

have been

Total (TA) TA is the total number of annotated transcripts,
i.e., the number of gold transcripts

Table 5. Accuracy metrics for semantic representations.

Name Definition

Recall TP
TP+FN

Precision TP
TP+FP

Accuracy TP+TN
TP+TN+FP+FN

F1-Score 2 ∗ Recall∗Precision
Recall+Precision

Fα-Score (1+α2)∗ Recall∗Precision
(α2∗Precision)+Recall

Command Recognition Rate (RcR) TP+TN
TA

Command Recognition Error Rate (CRER) FP
TA

Command Rejection Rate (RjR) FN
TA

Consider the nominal example of semantic translation for the transcript in Table 6,
“good day american seven twenty six descend three thousand feet turn right heading three four zero”.
We use this example to illustrate the metrics in action.
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Table 6. Nominal example of semantic translation.

Ground Truth Semantics Translated Semantics
AAL726 GREETING,
AAL726 DESCEND 3000 ft,
AAL726 HEADING 340 RIGHT

AAL726 GREETING,
AAL726 DESCEND,
AAL726 HEADING 340 RIGHT

In this example, there are 2 TPs (greeting and heading change) and 1 FP (due to the
missing altitude in the altitude change), 0 FN, 0 TN, and TA = 3. Table 7 summarizes the
accuracy metrics calculated on this nominal example.

Table 7. Accuracy metrics calculated on nominal example of semantic translation.

Name Definition Example
Recall 2/(2 + 0) 100%

Precision 2/(2 + 1) 66%
Accuracy (2 + 0)/(2 + 0 + 1 + 0) 66%
F1-Score F1 = 2∗100%∗33%

100%+33% 50%
Command Recognition Rate (RcR) (2 + 0)/3 66%

Command Recognition Error Rate (CRER) 1/3 33%
Command Rejection Rate (RjR) 0/3 0%

The range for all metrics, with the exception of the Command Recognition Error Rate
(CRER), is between 0 and 1. The CRER could go above 1 if (many) concepts not present in
the ground truth are generated.

These metrics provide a general measure of the semantic coverage overlap between
ontologies, i.e., when there is significant overlap, the CRER is low and when there is little
overlap, the CRER is high. These same metrics can measure the extraction accuracy of a
rules-based or deep neural network semantic parser in a general sense, but they should be
modified and supplemented before use as a measure of application accuracy performance.
We detail the rationale for and examples of application-specific metrics later in this section.

3.2. Reusing Models and Algorithms
3.2.1. Automatic Speech Recognition Models

In today’s world of large pre-trained models, automatic speech recognition models
are usually robust enough to transplant into new geographic regions, environments, and
domains with minimal finetuning. Some models can even adapt to language changes with
little to no finetuning! However, there are idiosyncrasies in the ATC language that can
reduce a speech recognition model’s performance if they are not addressed during trans-
plantation between geographic regions or simply throughout prolonged use. Specifically,
the quantity of airspace and region-specific, i.e., site-specific, proper nouns used during
ATC radio communications requires special handling and maintenance when operating a
speech recognition model in the ATC domain.

A lot of the vocabulary that appears in ATCo–pilot communications includes gen-
eral purpose words such as climb, descend, cleared, to, for, and, until, one, two, three,
alfa, bravo, and charlie. These are simple to document in the word level of an ontology.
However, depending on the quantity of airspace that the ASRU is intended to cover, a
significant percentage (90% or more) of the vocabulary could be made up of names, such
as those for airline callsigns, facility identifiers, location identifiers, navigational aids, and
procedure identifiers.

The site-independent, general-purpose vocabulary is relatively static and short—just a
few hundred words covers most ATCo–pilot voice communications. Section 4 will show
that 551 words cover 95% of the spoken words in the US data. The vocabulary of names
that are used in ATCo–pilot voice communications is much larger (tens of thousands if
covering the entire United States airspace) and subject to change to accommodate airspace
and procedure revisions and airline and pilot callsign name additions. This name list is
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disproportionately large compared with the general-purpose word list but not excessively
large by ASR standards. More importantly, the list of names is much more dynamic,
which creates a challenge. Just as software can deteriorate over time (i.e., software rot),
ASRU ontologies (and their associated models) can degrade over time if they are not
maintained. For ASRU applications, an outdated word-level ontology is likely to result in
out-of-vocabulary errors, which can negatively affect ASR accuracy and the accuracy of
all downstream capabilities. The same applies for the sequence of words, i.e., the ICAO-
phraseology and the deviation from ICAO phraseology [28]. This is a serious lifecycle
maintenance issue. It is a particularly large challenge for applications that need to be scaled-
up to cover multiple ATC sectors and facilities. Newer ASR models, which transcribe
at the letter level, and language model tokenizers, which tokenize at the subword level,
may eliminate the problem of “out-of-vocabulary” words but not the challenge of correctly
recognizing and interpreting these words given their low occurrence in the training data.
Furthermore, the unconstrained vocabulary in these models presents its own problems
to interpretation.

Changes on the ATC operations side are made on the 28-day AIRAC (Aeronautical
Information Regulation And Control) cycle. The number of changes during any one
AIRAC cycle is usually small and the changes are known well in advance. Changes on the
commercial airline side do not follow an official cycle but tend to be relatively uncommon.
There are two subcategories of names that can present unique problems for ASRU: Military
callsigns and five-letter waypoint names.

Military callsigns are a challenge because they can be introduced ad hoc and are not
always known in advance of a flight’s departure. The FAA ATC handbook [26] states that:
U.S. Air Force, Air National Guard, Military District of Washington priority aircraft, and USAF
civil disturbance aircraft. Pronounceable words of 3 to 6 letters followed by a 1- to 5-digit number.
These pronounceable words may be pilots’ names or nicknames and these words might
not otherwise appear in an ATC ontology and associated ASR model. For example, “honda
five” and “maverick zero zero seven” are examples of accepted military callsigns.

Five-letter waypoint names present a different challenge for ASRU. They are part
of the AIRAC update cycle and are published in advance, but only the five-letter codes
are published, not their pronunciations. In many cases, the waypoint codes correspond
to obvious words or can be sounded out using a simple algorithm—but not always! For
example: GNDLF, YEBUY, and ISACE. Whereas pronunciation can be handled manually
on a small scale by talking to the ATC personnel for a facility for some applications, it
does not easily scale to applications involving multiple ATC facilities or large amounts
of airspace.

In ASRU, there is a fundamental tradeoff between a vocabulary that is too small, result-
ing in out-of-vocabulary errors, and a vocabulary that is too large, resulting in confusion
between similar sounding words. An ASR built using a larger word-level ontology is not
always better. Furthermore, it may not be possible to know and include the region-specific
names in the vocabulary until you know the region where the model will be used. Thus,
a word-level ontology may only specify the general-purpose vocabulary explicitly and
define rules for how this vocabulary should be augmented with site-specific names before
use. This issue contributes to the challenge of sharing ASR models trained and/or used
between different ATC facilities or regions. Well-designed ASRU tools can simplify the
adding of this site-specific information to the ontology and corresponding software.

3.2.2. Semantic Parsing Algorithms

Semantic parse algorithms translate lexical representations into semantic represen-
tations by capturing and translating the syntactical relationships between words. The
mechanism for semantic parsing could be a rules-based algorithm or a machine-learning-
based neural network model. Both are sensitive to lexical representation changes because
they operate so closely on lexical and syntactic relationships.
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Rules-based semantic parse algorithms could be considered a part of the ontology
at the syntactical level because they contain rules about which relationships between
lexical representations are meaningful and how they can be interpreted to construe higher-
level semantic concepts. As every acceptable permutation of words must be explicitly or
implicitly specified for interpretation, rules-based parse algorithms inherently document
the syntactic level of the ontology; however, they can be incredibly labor intensive to
create and maintain. Transplanting a rules-based semantic parse algorithm into a new
region requires adapting the parse algorithm to regional lexicons, site-specific operational
communications, and jargon. This inherently updates the syntactic level of the ontology as
part of the model transition process.

Machine-learning-based models for semantic parsing learn the syntactic relationships
from the hierarchies present in the semantic labels. In one sense, this eases the burden of
rule creation, but it shifts it instead to data labeling, because the data labels must reflect the
relationships between lexical entities in order for the model to learn them. Furthermore,
as the syntactic rules are no longer explicitly stated as rules but hidden within the model
weights, exact syntactic relationships can be difficult to discover and adjust for new model
users, hampering reuse and even certification. In the absence of explicit syntactic rules, the
semantic definitions of the ATC ontology become even more important as they capture and
relay semantic hierarchies that might otherwise be overlooked without exhaustive data
search and analysis.

3.3. Sharing and Reusing Applications

In ATC, there are common areas for improvement that come up again and again as
possible avenues for ASRU application. As a result, the potential for application transition
and reuse is high when an application is successful, even across geographic boundaries. In
this section, we describe how ontologies facilitate application transition. We also discuss the
importance of application-specific metrics and why they should be added to the ontology
on an as-needed basis.

3.3.1. Examples of Application Specific Ontologies

Most applications incorporating ASRU are unlikely to use all the semantic concepts
defined in an ATC ontology. Indeed, some of the applications prototyped between MITRE
and DLR have only used a handful each. However, some semantic concepts appear across
multiple applications, marking them as particularly important and worthy of focused
research to improve extraction accuracy. Callsign is a recurring semantic concept that is
relevant to multiple applications. Thus, both MITRE and DLR have special handling, such
as context-based inference, to improve the detection accuracy of this concept.

Table 8 summarizes different applications of ASRU prototyped by DLR and MITRE.
The table elucidates by an “X”, which command semantics are used in each application.
The applications are described in greater detail below the table and references of published
reports are provided where available.

3.3.2. Closed Runway Operation Detection (CROD)

MITRE prototyped and field tested a closed runway operation clearance detection
system that uses ASRU to detect landing or takeoff clearances to runways that are desig-
nated as closed. The system relies purely on manual entry of runway closures and passive
listening on the local controller radio channel to detect a clearance to a closed runway and
issue an alert. For more information on this application, please see [15].

3.3.3. Wrong Surface Operations Detection (WSOD)

An expansion on the closed runway operation clearance detection system, this more
advanced prototype combines ASRU on radio communications with radar data in real time
to detect discrepancies between the landing clearance runway issued over the radio and the
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projected landing runway inferred from radar track data. When a discrepancy is detected,
the system generates an alert to the tower ATCo.

Table 8. Semantic representations relevant to specific applications.
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Acknowledgement X X
Airspace Usage Clearance X X
Altimeter/QNH Advisory X X X X
Altitude Change X X X X X X
Vertical Speed Instruction X X X X X
Attention All Aircraft X
Callsign X X X X X X X X X X X X X
Cancel Clearance X
Correction/Disregard X X X X X X X
Courtesy X
Future Clearance Advisory X X
Heading X X X X X
Holding X X X X X X
Information (Wind, Traffic) X X X
Maintain Visual Separation X
Pilot Report X X
Procedure Clearance X X X X X
Radar Advisory X X
Radio Transfer X X X X X X X X
Reporting Instruction X X X X X X X
Routing Clearance X X X X X
Runway Use Clearance X X X X X X X
Speed Clearance X X X X
Squawk X X X
Taxi/Ground Clearance X X X
Traffic Advisory X X X
Verify/Confirm X X X X

1 The gray shaded applications are MITRE applications, and the others are from DLR. An “X” indicates, which
command semantics is used in which application.

3.3.4. Approach Clearance Usage Analysis (ACUA)

MITRE’s voice data analytics capability was used to mine radio communications
for approach clearances to inform a post-operational approach procedure utilization and
conformance study [18]. The study used spoken approach clearances and radar tracks to
detect trends in when and where flights received their approach clearances, correlation
between aircraft equipage and approach clearance, and the effect of weather conditions
on procedure utilization. The study was also able to use detected approach clearances
to differentiate aircraft flying visual approaches from aircraft flying Required Navigation
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Performance (RNP) procedures and then analyze RNP procedure conformance. For more
information on this application, please see [18] for details.

3.3.5. Prefilling Radar Labels for Vienna Approach (PRLA)

DLR and Austro Control performed a validation exercise with 12 ATCos in DLR’s
ATMOS (Air Traffic Management Operations Simulator) from September 2022 to November
2022. The validations compared ATCos’ workloads and safety effects with and without
ASRU support. The evaluated application was inputting spoken commands into the aircraft
radar labels on the radar screen. Therefore, the number of missing and wrong radar label
inputs with and without ASRU support was determined. The details can be found in
“Automatic Speech Recognition and Understanding for Radar Label Maintenance Support
Increases Safety and Reduces Air Traffic Controllers’ Workload” of Helmke et al. presented
at the 15th USA/Europe Air Traffic Management Research and Development Seminar
(ATM2023) in, Savannah, GA, USA, 5–9 June 2023.

3.3.6. Electronic Flight Strip in Multiple Remote Tower Environment (MRT)

In multiple remote tower operations, controllers need to maintain electronic flight
strips for a number of airports. The manual controller inputs can be replaced by automatic
inputs when using ASRU support. In the HMI interaction modes for the Airport Tower
project, the tower/ground controller had to simultaneously take care of three remote
airports. Their responsibilities included entering flight status changes triggered by issued
clearances, such as pushback from gate, taxi with taxiways, line-up, runway clearances,
etc., with an electronic pen into the flight strip system. When ASRU support was active, the
flight status changes were automatically recognized from the controller utterances, entered
into the flight strip system, and highlighted for their review. If an automatically detected
flight status change was not manually corrected by the controller within ten seconds of
entry, the values were accepted by the system. The prototypic system was validated with
ten controllers from Lithuania and Austria in 2022. More details can be found in the
presentation “Understanding Tower Controller Communication for Support in Air Traffic Control
Displays” given at the SESAR Innovation Days in Budapest in 2022 by Ohneiser et al.

3.3.7. Integration of ASRU with A-SMGCS for Apron Control at Frankfurt and Simulation
Pilots in Lab Environment (SMGCS and SPA)

In June 2022, Frankfurt Airport (Fraport), together with DLR, ATRiCS Advanced
Traffic Solutions GmbH, and Idiap performed validation trials with 15 apron controllers
in Fraport’s tower training environment under the STARFiSH project. An A-SMGCS
(Advanced Surface Movement Guidance and Control System) was supplemented with
ASRU to enable integration of recognized controller commands into the A-SMGCS planning
process and simultaneously improve ASRU performance with the addition of context from
A-SMGCS. Together with manual input from the ATCo, the A-SMGCS is able to detect
potentially hazardous situations and alert the ATCo. The addition of ASRU reduces the
burden on the ATCo to manually input issued clearances over the radio into A-SMGCS.
Research results showed that up to one third of the working time of controllers is spent
on these manual inputs, which is detrimental to overall efficiency because ATCos spend
less time on the optimization of traffic flow. More details can be found in the presentation
“Apron Controller Support by Integration of Automatic Speech Recognition with an Advanced
Surface Movement Guidance and Control System” given at the SESAR Innovation Days in
Budapest in 2022 by Kleinert et al. Table 8 contains two columns for this application. The
column “SMGCS” corresponds to the support of the ATCo in this application, whereas the
column “SPA” corresponds to the support of the simulation pilots by ASRU.

3.3.8. Workload Prediction for London Terminal Area (WLP)

Under the Highly Automatic Air Traffic Controller Working Position with Artificial
Intelligence Integration (HAAWAII) project, DLR, together with NATS (the Air Navigation
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Service Provider of the United Kingdom), University of Brno, and Idiap developed a tool
that determines an ATCo’s workload in real-time, based on input from ASRU. The radio
communications between ATCos and pilots at London TMA, for Heathrow Approach, was
analyzed. Length of utterances, frequency usage rate, number of greetings, and number
of miscommunications (say again, etc.) were evaluated for this purpose [30]. Callsign
information is of minor importance here.

3.3.9. Integration of ASRU and CPDLC (CPDLC)

Under the HAAWAII project, DLR, together with NATS and Isavia ANS evaluated the
performance of ASRU and CPDLC integration. More details can be found in the deliverable
D5.3 of the HAAWAII project “Real Time Capability and Pre-Filling Evaluation Report”. In
the future, ATCos and pilots will communicate their intentions via both data link, e.g.,
CPDLC (Controller Pilot Data Link Communication), and radio communications. In this
envisioned state, ASRU and CPDLC are not competitors but complementary tools. Current
CPDLC applications are expected to advance with the advent of data link with lower
latency (LDACS). ASRU can reduce the number and complexity of mouse clicks required
to create a CPDLC message.

3.3.10. Pilot Weather Reports (PWR)

MITRE performed a post-operational analysis on the quantity of weather-related pilot
reports (PIREPs) that could be automatically detected and submitted as “synthetic PIREPs”
by an ASRU-enabled capability [19]. One of the goals of this analysis was to see if synthetic
PIREPs could supplement the manually submitted PIREPs present in the system today and
better inform strategic and tactical planning of ATC operations throughout the US National
Airspace System (NAS) while also easing the ATCo workload. This use case relied on the
Callsign and Pilot Report semantic representations to generate a formatted synthetic PIREP.
More details about the motivation, outcomes, and conclusions of this analysis can be found
in [19].

3.3.11. Use of Visual Separation (VFR)

Pilot-to-pilot visual separation is an important component of NAS safety and efficiency
because it allows aircraft to fly closer together with the pilot assuming responsibility for
separation. However, determining whether pilots were maintaining visual separation can
only be determined from the voice communications between ATCo and pilot. ASRU can
be used to detect traffic advisories (when an ATCo points out traffic to a pilot), the pilot
reporting the traffic in sight, and the instruction for pilots to “maintain visual separation”
in post-operations analysis. This information is critical to understanding the safety of a
given encounter between aircraft. The information can therefore be used to better prioritize
operations for safety assurance review. Visual separation information can also be used
to inform efficiency-perspective analysis of operations (e.g., what percentage of flights
are visual separated), because it informs the spacing between aircraft, which informs
throughput/capacity.

3.3.12. Simulation Pilots in Enroute Domain Controller Training (SPET)

MITRE designed and prototyped high-fidelity simulation training consoles to support
controller training in the enroute domain [5]. To reduce training and simulation costs,
these consoles included a real-time simulation pilot system that uses automatic flight
management, ASRU, and text-to-speech technology to interact with controllers during
training simulations. Automated simulation pilots can handle more aircraft workload,
provide consistent performance and response times to controller instructions, and require
less training than human simulation pilots. The success of this prototype led to other
follow-up projects, such as terminal training applications, Human-In-The-Loop (HITL)
simulations to support new technology prototyping, procedure and airspace design, and
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research studies in MITRE’s Integration Demonstration and Experimentation (IDEA) Lab,
and bilingual training consoles for international use.

3.3.13. Readback Error Detection for Enroute Controllers (RB-E)

Under the HAAWAII project, DLR, together with the Icelandic Air Navigation Service
Provider Isavia ANS, University of Brno, and Idiap developed a readback error detection
assistant and tested it on pilot and ATCo voice utterances directly recorded in the ops room
environment of Isavia ANS [2].

3.3.14. Readback Error Detection for Tower Controllers (RB-T)

In 2016, MITRE conducted a feasibility study into the automatic detection of readback
errors at the tower/local controller ATCo position using recorded live-operations audio [1].
The study focused on runway and taxiway use clearances and assessed the readiness
of ASRU performance to support this type of application. Whereas automatic speech
recognition performance was promising, the study found that more complex understanding
logic was needed to differentiate acceptable readback discrepancies from alert-worthy
readback errors. The study also identified the importance of detecting the nuances of
dialogue between the ATCo and pilot during which the ATCo might have already taken
corrective action and nullified the need for an alert.

3.4. Application-Specific Metrics

We previously described general semantic accuracy metrics for evaluating how well
labeled concepts are extracted in general, irrespective of a downstream application. In an
ideal world, we could have a single set of objective ASRU metrics that could be used to
communicate accuracy and be meaningful across all applications. However, we cautioned
that these general semantic metrics should be supplemented before use with a downstream
application. In this section, we describe why metrics must be tailored to the application in
order for it to be useful.

The first set of metrics to consider is the set that describes the accuracy performance
of the application, i.e., the performance that is relevant to the end user (who could be an
ATCo, pilot, data analyst, policy maker, etc.). The application accuracy is the ultimate
measure of performance because the application’s benefit is the ultimate measure of the
utility of the capability.

However, there are situations where the application accuracy can diverge from the
accuracy of the underlying ASRU. One case is when the application logic is such that an
incorrect ASRU result can still produce the correct application output. Another case is
when there is non-speech information used after ASRU processing that can improve wrong
or missing ASRU output.

For example, consider the application described in Section 3.3.3, in which ASRU is
used to detect the ATCo landing clearance and then surveillance track information is used
to determine if the arrival is lined up for the correct runway. If the arrival is lined up for
the wrong runway, the application issues an alert to the ATCo; if no landing clearance is
detected for an arrival, the application does nothing.

Incorrect ASRU detection of the callsign will likely result in no alert because the system
will not be able to compare the flight’s track with a clearance. No alert will likely be the
correct application response because most arrivals line up for the correct runway. Similarly,
missing the landing clearance would also result in no alert. In other words, we are getting
the right results but for the wrong reason.

In contrast, incorrect ASRU detection of the callsign could be corrected through use of
other information, e.g., using the arrival’s position in the landing sequence to fill in the gap
in knowledge, resulting in correct application performance.

It is clear from these examples that although application performance is the ultimate
measure of success, it obscures some detail of the ARSU accuracy. Detail of the ASRU
accuracy can be critical for two reasons. One, it provides understanding of what kinds of

17



Aerospace 2023, 10, 526

application errors will result from ASRU errors. Two, it provides understanding of where
ASRU accuracy can and should be improved.

Continuing the example of using ASRU to detect landing clearances that can be
compared with arrival alignment to identify wrong surface alignment, ASRU errors in
callsign recognition will result in ASRU failing to associate the landing clearance with the
correct aircraft. Given that most aircraft line up correctly, this missed recognition will likely
still result in a correct “no alert” response at the application level. On the other hand, ASRU
errors in runway recognition could result in ASRU producing an incorrect assigned runway
for the flight, which could then result in a false alert to the ATCo.

Thus, for an application that aims to detect and alert on runway misalignment, the
ASRU accuracy measures should be defined corresponding to the ontology concepts that
need to be detected for the application: callsign, landing clearance, and runway. For each
concept, detection accuracy can be evaluated using the metrics defined in Table 5.

These metrics should then be produced for each concept separately, such that callsign,
landing clearance, and runway would each have several associated accuracy measures:
recall, precision, etc. These metrics can then be used to identify and measure performance
improvements in the ASRU. For example, they differentiate between missed landing clear-
ances due to missed callsign detection and those due to missed landing clearance detection.

Note that the concept detection accuracy can be rolled up into a single metric, pro-
ducing an overall concept recognition error rate by combining the TP, FP, TN, and FN
for all concepts. This overall concept recognition error rate provides a general measure
of the ASRU accuracy, and improvement in this measure generally means better ASRU
accuracy for the application, which in turn means better overall efficacy for the application.
However, as the previous examples illustrate, rolling the detection of these concepts up into
a single measure will obscure understanding about the effects of the errors on application
performance or where ASRU improvements should be targeted. Using Figure 5, consider
the following example.
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Figure 5. Example use of ASRU semantic concepts for a specific application.

Consider evaluation of ASRU performance on a set of 10 transmissions for this hypo-
thetical application where all three basic concepts are needed to generate correct application
output. A concept can be the callsign, the command type, the command value, etc. The
Concept Error Rate (CER) measures the accuracy of the ASRU in detecting each concept,
and a CER should be measured for each concept, not combined into a single metric covering
the accuracy of detecting all semantic concepts. In contrast, the Command Recognition
Error Rate (CRER), as defined in Table 5, measures the accuracy of the ASRU in detecting
complete commands, which requires both the callsign and the instructions, which can be
composed of different concepts, again.

In Case A, ASRU produces fully correct concepts for nine of the ten transmissions
but zero correct concepts for one transmission. A “combined” concept error rate (CER,
3/30 = 10%) and the application error rate (1/10 = 10%) are the same. In Case B, ASRU
produces fully correct output for seven of the ten transmissions but two out of three correct
concepts for the remaining three transmissions. The combined CER is still 3/30 = 10% but
the application error rate is now 3/10 = 30%. The CRER for Case A is 10% whereas the
CRER for Case B is 30%.

The application performance for Case A is clearly better than for Case B. It is clear
from this example that combined CER is obscuring important information. First, Case A
will result in better application performance than Case B, despite the two having the same
combined CER. Second, neither the combined CER nor the CRER tells us which concepts
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have room for improvement. For the example in Case A, the issue may be a systematic
problem with a transmission that affects the recognition of all three concepts, such as bad
audio or incorrect segmentation. For the example in Case B, did the system miss the callsign
each time or one of the other concepts? Individual measures of precision and recall for each
ontology concept (callsign, landing clearance, and runway in the example used above) are
needed to fully assess the ASRU accuracy.

As another example, if the application only requires one concept to be detected (e.g.,
the closed runway operation clearance detection application described in Section 3.3.2)
and does not require a callsign, then a metric such as CRER is not appropriate because it
incorporates unnecessary concepts into the metric.

In summary, there is not a single metric nor type of metric that is appropriate for all
applications. Practitioners should develop metrics specific to the application, covering both
the application level (i.e., the performance of the application from the user’s perspective)
and the ASRU level (i.e., the performance of the ASRU on individual concepts needed for
the application). These application-specific metrics may expand beyond accuracy mea-
sures and incorporate requirements on computing and speed performance as applications
come closer to being fielded in operational settings with specific resource constraints and
demands on response time.

4. Quantitative Analyses with Applied Ontologies

Thus, application-specific metrics assess overall application readiness for an opera-
tional setting and acceptability to the end-user. In this capacity, they are as important, if not
more so, than the lexical and semantic level ontology when applications are transplanted
into new operational environments. The general semantic accuracy metrics we described
previously help researchers evaluate data, algorithms, and models; however, application-
specific metrics describe the end-user experience and how he or she will be impacted by the
addition of the application to the operational environment. For this reason, we recommend
application-specific metrics be added to the conceptual-level definitions and rules of the
ontology when an application is transitioned. These application-specific metrics can go
beyond TN/TP/FN/FP and include metrics even more relevant to operations, such as false
alerts per hour.

The following two subsections describe example applications and the types of ontology-
related metrics needed to assess their accuracy performance.

4.1. Application-Specific Metrics for a Workload Assessment in the Lab Environment

This application is briefly described in Section 3.3.5. Table 9 summarizes the applicable
semantic concepts relevant to this application. The impact on workload and safety was
measured in terms of the number of missing and incorrect radar label inputs when ASRU
support was present and when it was not.

Table 9. Semantic accuracy metrics for workload assessment.

WER Total TP FP FN TN RcR RER RjR Prc Rec Acc F-1 F-2 F-0.5
0.0% 17,096 16,933 71 94 11 99.1% 0.4% 0.5% 99.6% 99.4% 99.0% 99.5% 99.5% 99.6%
3.1% 17,096 15,869 368 920 10 92.9% 2.2% 5.4% 97.7% 94.5% 92.5% 96.1% 95.1% 97.1%

Table 9 summarizes the command detection accuracy when ASRU support was present
during operations. Row “0.0%” shows the command detection performance with a perfect
speech-to-text conversion, i.e., all incorrect detections come from errors in semantic extrac-
tion. Row “3.1%” shows the actual command detection performance during the validation
trials with a speech-to-text engine that had an average WER of 3.1%.

For this use case, the application-specific metrics closely aligned with the semantic
accuracy metrics described in Section 3.1.2 because the command detection accuracy trans-
lated directly into radar label entry accuracy. The number of correctly detected commands,
or the command recognition rate (RcR), translated into how many entries the ATCo did not
have to manually enter into the automation system. The number of incorrectly detected
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commands, or the command recognition error rate (CRER), translated into the number of
safety risks introduced due to incorrect radar label inputs. The metric recall corresponded
approximately to the command detection accuracy. They would be equal if TP+FP+FN+TN
was equal to the total number of command samples (Total). The metric RER approxi-
mated 1—Prc. This correlation between RcR and Acc and the inverse correlation between
RER and Prc was not present in our nominal example in Section 3.1.2 but was present in
this experiment.

4.2. Application-Specific Metrics for a Post-Operations Pilot Report Analysis

The application itself is briefly described in Section 3.3.10. For the context of this paper,
we discuss here the value of the application-level metrics used to measure the validity of
this prototyped application’s overall performance.

From the analyst perspective, the relevant metrics for this application were:

1. The number of correctly detected and accurately formatted pilot reports (PIREPs), i.e.,
correct PIREPs.

2. The number of correctly detected but incorrectly formatted PIREPs (incorrect PIREPs
because they are incomplete, misleading, or both).

3. The number of PIREPs not detected or not mapped to a formatted PIREP (missed PIREPs).

The first quantity informs how much reliable supplemental information could be
introduced into the US National Airspace System (NAS) by this capability. The second
quantity informs how much supplemental information introduced might be misleading
and potentially detrimental to planning. The final quantity informs how much potential
supplemental information is being missed but would not negatively affect planning except
by omission.

However, there is not a direct one-to-one correspondence between the semantic ac-
curacy of the individual Callsign and Pilot Report concepts and the application metrics.
Figure 6 illustrates the effect of different errors during the automatic PIREP detection logic
within the application and their effect on the overall application performance. As the
diagram shows, an error in Callsign extraction could lead to either an incorrect PIREP or
a missed PIREP; an error in Pilot Report extraction could also independently lead to an
incorrect PIREP or a missed PIREP, and only the combined accurate extraction of both the
Callsign and Pilot Report semantics could lead to a correct PIREP.

Table 10 recaps the concept metrics of the application originally published in [19]. The
final output quantities show that even when a PIREP concept is correctly detected, it may
not be fully and correctly encoded (i.e., the application-level success).

Using the sample results from Table 10, we define application-specific metrics for precision
and recall. We define true positive PIREPs as those that are encoded with complete information
and PIREPs that are encoded with correct but incomplete information, on the reasoning that
some information is better than none; this is an application-specific consideration. Using that
definition, we calculate precision as 88% = (79 + 26)/(79 + 26 + 14). Recall is then calculated as
63% = (79 + 26)/168.

The complexity of the final application metrics is compounded by additional upstream
probabilistic processes such as speech diarization, speech recognition, and text classification
that could all introduce errors affecting the final result of the application. The interwoven
effects of the different internal model and algorithm errors mean that no one model or
algorithm is the most important and no individual model or algorithm accuracy metric
could estimate overall application accuracy. Thus, the application-specific metrics are
necessities invaluable for assessing the overall value of the prototype and its readiness for
use in an operational setting.
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Table 10. Summary of PIREP application accuracy metrics.

Ground Truth Detection Encoding
168 PIREP 161 Correct

detection
79 Correct final PIREP
34 Incorrect discard—callsign not spoken
8 Incorrect discard—callsign not detected

26 Incorrect final PIREP—missed details
14 Incorrect final PIREP—incorrect flight

7 Missed
detection

96 Not PIREP 79 Correct
rejection

17 False
detection

4.3. European Word-Level Challenges and Statistics

As already described in Section 3.2.1, a lot of the vocabulary that appears in ATCo–pilot
communications are general-purpose words such as climb, descend, cleared, etc. A large
and significant percentage of the vocabulary is made up of names, e.g., airline designators,
facility identifiers, location identifiers, navigational aids, and procedure identifiers. They,
however, seldom occur, i.e., training data might not be available as needed.

The following Table 11 shows the results of the top 10 words in the two applications
from the laboratory environment, described in Sections 3.3.5 and 3.3.7. “# Spoken” shows
how often the word was really said. “Freq” shows how often this word was recognized
relative to the number of all words spoken.

Table 11. Top 10 words of Vienna Approach and Frankfurt Apron Control.

Vienna Approach Frankfurt Apron Control
Word # Spoken Freq Word # Spoken Freq
two 8841 7.4% one 11,724 9.3%
one 8128 6.8% november 7713 6.1%
zero 7576 6.4% five 7100 5.6%
four 5805 4.9% two 5520 4.4%
three 5624 4.7% lufthansa 4994 4.0%
eight 5422 4.6% eight 4939 3.9%

austrian 4979 4.2% lima 4002 3.2%
six 4295 3.6% seven 3882 3.1%

seven 4028 3.4% four 3769 3.0%
descend 3909 3.3% hold 3513 2.8%

Words shaded by “light blue” were not present both top 10 lists.

The Vienna data is based on 118,800 spoken words, whereas the Apron application
is based on 125,800 spoken words. In “light blue”, we marked the words that were only
present in one or the other top 10 list but not in both. In Frankfurt, most of the taxi way
names start with the letter “N”, e.g., N1, N6, etc. Most of the flights to and from Vienna are
from “Austrian Airlines”, whereas it is “Lufthansa” for Frankfurt.

Table 12 shows the top 10 word for London TMA (Section 3.3.8) and for the enroute
traffic managed by Isavia ANS (Section 3.3.9). The fact that “Reykjavik” is within the Top
10 of Icelandic traffic control is quite clear. Reykjavik is the capital of Iceland and the station
name ATCos and pilots are using. “speed” being the sixth most frequent used word in
London traffic might be surprising; however, knowing that “speed” is used both in speed
commands and also in the callsign “speed bird” (for British Airways) explains the high
occurrence. The London data is based on 102,952 spoken words, whereas the enroute
application is based on 73,980 spoken words.
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Table 12. Top 10 words of London TMA and Isavia Enroute Traffic.

London TMA Isavia ANS Enroute Traffic
Word # Spoken Freq Word # Spoken Freq
one 7599 7.4% one 4371 5.9%
zero 6284 6.1% zero 3849 5.2%
five 5191 5.0% three 3255 4.4%
two 5019 4.9% five 3230 4.4%

seven 3702 3.6% seven 3064 4.1%
speed 3677 3.6% two 2830 3.8%
three 3536 3.4% six 2436 3.3%

six 3198 3.1% reykjavik 2202 3.0%
four 3113 3.0% nine 2057 2.8%
eight 2965 2.9% four 1962 2.7%

Words shaded by “light blue” were not present both top 10 lists.

Investigating the statistics for all four ASRU applications, we get the values shown in
Table 13. The ten digits make the top 10. The digit “four” has the highest word error rate. It
is often mixed with “for”, a problem which can be solved afterwards at the semantic level.

Table 13. Top 10 words of four DLR applications from Tables 11 and 12.

Word # Spoken Freq
one 31,822 7.6%
two 22,210 5.3%
zero 19,378 4.6%
five 19,266 4.6%

three 15,346 3.7%
eight 15,085 3.6%
seven 14,676 3.5%
four 14,649 3.5%
six 13,313 3.2%

nine 9998 2.4%

Table 14 shows the “Number of Words” evaluated for each of the four applications.
For Vienna, 179 words were observed more than four times, i.e., at least five times. The
first 62 most occurring words for Vienna already sum up to 95% of all the spoken words.
For 99% of all spoken words, we need 112 words. All in all, we have 347 different words
observed for the Vienna ASRU applications (row “words for 100%”).

Table 14. Statistics on word level for different ASRU applications.

Vienna Frankfurt NATS Isavia All
Number of Words 118,794 125,810 102,952 73,980 421,536
Spoken >4 times 179 291 497 583 931
Words for 95% 62 110 205 322 256
Words for 99% 112 203 432 754 619

Words for 100% 347 520 899 1375 1972

The word statistics in Table 14 also show the difference between lab experiments
and real-life data from the ops room. The number of used words is much bigger in the
ops room environment than in the lab environment. This is supported by the number of
words occurring more than four times and also by the 95%, 99%, and 100% thresholds. In
the Icelandic enroute airspace English, Icelandic and Norwegian words are used, which
explains the high number of different words.

4.4. US Word-Level Statistics

A similar analysis has been performed by MITRE. It is based on 70 ATC facilities
all over the US with a corpus of 1,248,436 words. Table 15 is similar to Table 14 for the
European word-level statistics.
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Table 15. Statistics on word level for different MITRE data sets.

From Corpus Partition of 99,513 Transmissions/1,248,436 Words
Unique Words Cumulative Word Count Percentage

Spoken >1 time 4471 1st 50 words 60%
Spoken >4 times 2640 1st 100 words 74%
Words for 95% 542 1st 150 words 81%
Words for 99% 1884 1st 500 words 94%

Words for 100% 7236 1st 1000 words 98%

Table 16 shows the top 10 word occurrences from the MITRE analysis. The 10 digits
are also the most frequently used words in the US.

Table 16. Occurrence of digits in MITRE data set.

Word # Spoken Freq Additional Information
one 56,298 4.5%
two 54,376 4.4%

three, tree 45,112 3.6% tree: 167
zero, oh 43,584 3.5% oh: 3168
five, fife 32,038 2.6% fife: 1

four 31,035 2.5%
seven 27,466 2.2%

six 26,410 2.1%
eight 22,324 1.8%

nine, niner 21,901 1.8% niner: 7193
All 360,544 29.0%

Looking into the details we observe some other interesting differences such as “one”
and “two” also being the top words in US. The word “nine” would be rank only sixteen by
occurrence; however, when combined with “niner”, the composite moves into the top 10
in terms of occurrence frequency. One surprising observation is that “nine” is used more
often than “niner”, although niner is the recommended spoken form for the digit by the
ICAO [28]. The European transcription ontology does not even distinguish between “nine”
and “niner”. Both words are mapped to “nine”. Europe also does not distinguish between
“five” and “fife” or “three” and “tree”. Manual transcribers may not have even been able to
distinguish between them.

The digit “oh” for “zero”, transcribed in Europe as a capital “O”, is observed in the
European data only 59 times and only in the operational environment data sets from
NATS and Isavia. This is a negligible percentage. However, in the US data, the more than
7000 occurrences constitute a significant percentage.

The 10 digits from “zero” to “nine” cover 42% of all words observed in the European
DLR data set. In the MITRE data set, the same digits comprise 29% of all spoken words,
when “niner”, etc., are also considered. Our hypothesis for this is that ATCos and pilots are
not limited to the ten digits, as recommended by ICAO [28]. They also use the other group-
form digit words such as “ten”, “twenty”, “thirteen”, “fourteen”, “hundred”, “thousand”,
etc. When these additional numbers are summed up together with “zero” through “nine”,
then numerical words comprise 40% of all words spoken, which is shown in Table 17.
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Table 17. Frequency of values between 10 and 1000 in MITRE and DLR data sets.

MITRE DLR
Word Numerical Value # Spoken Freq # Spoken Freq

ten 10 4033 0.3% 270 0.1%
eleven 11 2788 0.2% 8 0.0%
twelve 12 3185 0.3% 5 0.0%
thirteen 13 1810 0.1% 2 0.0%
fourteen 14 2274 0.2% 4 0.0%
fifteen 15 2671 0.2% 13 0.0%
sixteen 16 2224 0.2% 5 0.0%

seventeen 17 2085 0.2% 3 0.0%
eighteen 18 2251 0.2% 62 0.0%
nineteen 19 2404 0.2% 327 0.1%
twenty 20 17,323 1.4% 972 0.2%
thirty 30 14,773 1.2% 101 0.0%
forty 40 11,961 1.0% 45 0.0%
fifty 50 11,327 0.9% 201 0.0%
sixty 60 7907 0.6% 286 0.1%

seventy 70 6882 0.6% 14 0.0%
eighty 80 7339 0.6% 317 0.1%
ninety 90 6401 0.5% 21 0.0%

hundred 100 4726 0.4% 1329 0.3%
thousand 1000 13,732 1.1% 5019 1.2%

All 128,096 10.3% 9004 2.1%

The words “hundred” and “thousand” have nearly the same frequency in the MITRE
and DLR data sets. These words are recommended by ICAO. The combined occurrences
of words for 11 through 90 are negligible in DLR’s data set. They sum up to only 0.6%
of the words spoken, whereas in the MITRE data sets they sum up to over 10%, which is
significantly more. Furthermore, analysis of the US data set by speaker showed that ATCos
and pilots used group-form numbers about equally, so the difference in group-form word
occurrence between the US and European data sets can be attributed to differences in word
usage by region, i.e., between the US and Europe, not speaker.

Moreover, very interesting is how small a percentage of the most frequently occurring
words in the data set comprise in the overall data set vocabulary. Table 18 summarizes
the top occurring words that comprise 95% of words in the data set and the percentage
of the vocabulary they represent. This top 95% of words present in the corpus is made
of 551 distinct words and includes all the numbers and letters but not most of the airline,
ATC facility, and waypoint names. This 551-word set is about 7.61% of the data set’s
7236 distinct word vocabulary, which means the remaining 92.39% of the distinct words in
the vocabulary comprise only 5% of the data corpus in terms of occurrence.

This last statistic illustrates one of the biggest challenges for ASRU in the ATC domain.
The large variety of distinct waypoint, airline, and airport names relevant to understanding
is hard to recognize correctly because they have low occurrence in the data set. The reason
for their low occurrence is because a training corpus for ASR or semantic parse is often
deliberately varied to improve robustness and reduce overfitting, which means they are
collected from many facilities and regions. However, the geographical spread of the audio
data sources, while improving general robustness, dilutes the observation frequency of
regional waypoint, airline, and facility names. This scarcity of a large percentage of the
vocabulary in the training data subsequently leads to misrecognition of these words and
misinterpretation unless deliberate action is taken to correct or improve their detection.

The findings of this analysis lead to our conclusion that although the methods and
tools for developing and measuring ASRU performance can be shared across regions (e.g.,
between the US and Europe), the specific models built for specific regions would likely not
work well across regions.
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Table 18. Word classification of MITRE words.

Meaning
Category Definition Examples # Spoken Percentage of

Corpus Words
Percentage of
Vocabulary

Other climb, fly, contact,
thanks, until 527,579 42.3% 4.78%

Numeric Digits, other numbers,
number modifiers

zero, ten, hundred,
triple, point 498,066 39.9% 0.51%

Callsign Words Airline names, aircraft
types, air service types

United, Cessna,
Medevac 56,265 4.5% 0.90%

Phonetic
Alphabet Phonetic alphabet words Bravo, Charlie,

Zulu 48,077 3.9% 0.39%

Place Names ATC facilities and
airport names Atlanta, Reno 21,958 1.8% 0.50%

Initials Letters,
e.g., “i l s” V, O, R, J, F, K, D, F 16,543 1.3% 0.35%

Filler Words
Words that fill up space

but do not add
substance

uh, um 10,356 0.8% 0.03%

Multiple
Meanings

Words that can be all or
part of airline names,

airport names, or
general-purpose words

Sky, Midway,
Wisconsin 7084 0.6% 0.12%

Waypoint Names Named fixes and
waypoints

SAILZ, KEEEL,
HUNTR, KARLA 706 0.1% 0.04%

Total 1,186,634 95.0% 7.61%

5. Conclusions

This paper built off our comparative analysis of the two ontologies in [3] in two ways.
First, this paper describes the impact of ontologies on collaboration on data, models, and
applications. We described several ways that an ATC ontology is critical to facilitating
collaboration between researchers and to appropriate evaluating ASRU applications in the
ATM domain, using examples of specific applications to illustrate how ontology facilitates
development of the metrics targeted for the application.

Second, this paper presents a word-level comparison of US and European ATC speech,
specifically focusing on similarities and differences in the types of words. Although there
are significant similarities (e.g., in both regions, digits make up the top 10 most spoken
words), there are also significant differences (e.g., the frequency of group-form numbers).
This analysis leads to our conclusion that whereas the methods and tools for developing
and measuring ASRU performance can be shared across regions (e.g., between US and
Europe), the specific models built for the different regions would likely not work well
across regions.

Future work is needed to develop capabilities to make methods and tools more
shareable between ontologies. This effort could involve modifying one or both ontologies
and/or creating translation mechanisms to automatically convert data from one ontology
to the other. Ultimately, research funding is critical to informing the effective and available
paths forward.
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Appendix A. Command Types in European and MITRE Ontology

Table A1. Altitude clearances in MITRE and European ontology.

MITRE European Example/Explanation
Climb CLIMB climb to flight level three two zero

Descend DESCEND descend to flight level one four zero
Tries always to derive, whether CLIMB or

DESCEND ALTITUDE if no descend or climb keyword is
provided/recognized in transmission

StopAltitude STOP_ALTITUDE/ STOP_CLIMB/
STOP_DESCEND stop descent at flight level one zero zero

Maintain MAINTAIN ALTITUDE/
PRESENT_ALTITUDE

maintain flight level one eight zero;
maintain present level

Cancel NO_ALTI_RESTRICTIONS No altitude constraints at all.

Table A2. Speed clearances in MITRE and European ontology.

MITRE European Example/Explanation
IncreaseSpeed INCREASE/INCREASE_BY increase to zero point eight four mach
ReduceSpeed REDUCE/REDUCE_BY reduce speed to two two zero knots

Tries always to derive, whether REDUCE or
INCREASE. SPEED if no reduce or increase keyword is

provided/recognized in transmission

RESUME_NORMAL_SPEED Still the published speed constraints
are relevant.

Cancel SpeedRestriction NO_SPEED_RESTRICTIONS The speed restriction is removed
DoNotExceed OR_LESS used as qualifier Speed limit

Maintain MAINTAIN SPEED/PRESENT_SPEED maintain present speed
SpeedChange SPEED, INCREASE, REDUCE used in Europe

REDUCE_FINAL_APPROACH_SPEED reduce final approach speed
REDUCE_MIN_APPROACH_SPEED reduce minimum approach speed

REDUCE_MIN_CLEAN_SPEED reduce minimum clean speed
HIGH_SPEED_APPROVED speed is yours

Table A3. Altitude change rate clearances in MITRE and European ontology.

MITRE European Example/Explanation

Climb (At) RATE_OF_CLIMB climb with two thousand feet per minute (or greater)/
climb at three thousand feet per minute

Descend (At) RATE_OF_DESCENT descend with two thousand five hundred feet per minute

Maintain maintain three thousand in the climb/
maintain three thousand five feet per minute in the climb

VERTICAL_RATE if no climb or descent keyword is provided/recognized
in transmission

EXPEDITE_PASSING expedite passing flight level three four zero
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Table A4. Heading clearances in MITRE and European ontology.

MITRE European Example/Explanation

TurnLeft, TurnRight HEADING/TURN/TURN_BY (Qualifier LEFT/RIGHT) turn left heading two seven zero;
turn right by one zero degrees

Turn TURN/TURN_BY (Qualifier LEFT/RIGHT) turn right by one zero degrees
TURN (without a value) Qualifier LEFT/RIGHT) turn right

Fly HEADING (Qualifier none) fly heading three six zero
(no keyword left/right recognized)

Maintain CONTINUE_PRESENT_HEADING/MAINTAIN HEADING continue present heading
MAGNETIC_TRACK magnetic track one one five

Table A5. Routing clearances in MITRE and European ontology.

MITRE European Example/Explanation

Direct DIRECT_TO/DIRECT
Approach_Leg/LatLong

direct to delta lima four five five/
direct final runway three four

direct six zero north zero one five west
Resume NAVIGATION_OWN own navigation
Cleared CLEARED TO cleared to london heathrow
Circle ORBIT (Qualifier LEFT/RIGHT) make orbits to the left

Table A6. Procedure clearances in MITRE and European ontology.

MITRE European Example/Explanation
Cleared

(STAR/SID/Approach)
CLEARED/CLEARED
VIA/MISS_APP_PROC cleared via sorok one november

Intercept
(Approach/ApproachType) INTERCEPT_LOCALIZER intercept localizer for runway

INTERCEPT_GLIDEPATH intercept glidepath
JOIN_TRAFFIC_CIRCUIT right traffic circuit for runway three four

Join TRANSITION join nerdu four november transition
Resume NAVIGATION_OWN resume navigation

Continue CONTINUE_APPROACH continue approach runway zero one
Cleared CLEARED Approach_Type cleared Rnav approacch zero nine center

Cancel (Approach/ SpeedRestriction/
AltitudeRestriction) CANCEL Approach_Type cancel approach for runway zero five

Climb (Via) climb via the capital one departure
Descend (Via) descend via the cavalier four arrival

GO_AROUND go around
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Abstract: In the air traffic management (ATM) environment, air traffic controllers (ATCos) and
flight crews, (FCs) communicate via voice to exchange different types of data such as commands,
readbacks (confirmation of reception of the command) and information related to the air traffic
environment. Speech recognition can be used in these voice exchanges to support ATCos in their
work; each time a flight identification or callsign is mentioned by the controller or the pilot, the flight
is recognised through automatic speech recognition (ASR) and the callsign is highlighted on the
ATCo screen to increase their situational awareness and safety. This paper presents the work that is
being performed within SESAR2020-founded solution PJ.10-W2-96 ASR in callsign recognition via
voice by Enaire, Indra, and Crida using ASR models developed jointly by EML Speech Technology
GmbH (EML) and Crida. The paper describes the ATCo speech environment and presents the main
requirements impacting the design, the implementation performed, and the outcomes obtained using
real operation communications and real-time simulations. The findings indicate a way forward
incorporating partial recognition of callsigns and enriching the phonetization of company names to
improve the recognition rates, currently set at 84–87% for controllers and 49–67% for flight crew.

Keywords: speech recognition; human–computer interaction; situational awareness; air traffic
management; air traffic controller; flight callsign; ASR; VRS

1. Introduction

ATCos work with a Controller Working Position (CWP) which displays all of the
information needed to support them in performing the safe, orderly, and efficient manage-
ment of flights. On the CWP, flights are presented as radar tracks with an associated label
indicating as a minimum the flight identification or callsign, current flight level, current
speed, and the next point of the route.

While performing their tasks, ATCos must communicate with flight crews to provide
them with commands and information. This communication can be performed via voice or
via datalink.

Communication between ATCos and FC follows the standard established by the
International Civil Aviation Organization (ICAO) [1]. This standard states that when
communications are initiated by ATCos they must:

• Start by the identification or the callsign of the flight being addressed;
• Continue by issuing the command with its qualifiers or information.

Example:
Iberia three four two descend flight level two five zero

30



Aerospace 2023, 10, 433

Control commands safety-related parts must always be acknowledged by the FC
whose answer:

• Starts with the command with its qualifiers;
• Ends with the identification or callsign of flight.

This answer is known as readback and it is vital for ensuring mutual understanding
between the FC and the ATCo of the intended plan for the aircraft. ICAO [2] requires “Flight
Crew shall read back to the air traffic controller safety-related parts of ATCo clea-rances
and instructions which are transmitted by voice”.

The answer to the previous command would be:
Descending to flight level two five zero, Iberia three four two
When the FC initiates communication with the ATCos they will start the commu-

nication with the callsign and follow it with the necessary information. FC can initiate
communications for several reasons:

• FCs always have to call air traffic control when they are about to enter a new air
traffic service, ATS, unit or sector; they make a call prior to the boundary between
both airspaces. The FC communicates with the ATCo to make them aware of their
presence and confirm that voice communication is feasible for emergency use. In this
communication the FC will typically greet the ATCo and provide some information
related to the flight. Example: Good morning Ryanair nine zero three five flight level
three hundred.

• The FC usually starts communications at any time with ATCos to request modifying
vertical/horizontal trajectories and/or the speed to fly at the optimum performance of
the aircraft.

• Another important reason to initiate a call from the FC is requesting to modify their
flight level, route, speed, or any other flight condition because of adverse weather such
as encountering cumulonimbus, severe turbulence, icing etc. Example: Air Europa six
alfa bravo requesting flight level four zero zero due to severe turbulence.

The ATM community has investigated ASR mainly using communications from con-
troller utterances [3–5]. This is due mainly to the fact that the ASR is seen as a means to
free the controller from the necessity to manually introduce commands on the CWP, but
also because of the characteristics of controllers and pilot communications.

There are some basic features in communications initiated by the controller:

• The voice signal used for speech recognition from controllers’ voice utterances is
extracted directly from the jack of the controller. This signal has a low degree of noise.

• Controllers’ language is English or the local language of the ground station [6].
• Usually, controllers of an air navigation service provider will have similar accents

when speaking.
• The percentage of women/men in air traffic control differs from one country to another.

In Spain or France, the percentage is around 33% women [7,8].
• Communications from controller to flight crew can be standardised as [9]: call id + command

+ qualifier 1 + qualifier 2.

On the other hand, there are some basic features in communications initiated by flight crew.

• The voice signal used for speech recognition from flight crew voice utterances is
extracted from radio communications. The quality of these communications is highly
dependent on:

1. The distance of the aircraft to the receiving radio station.
2. The signal-to-noise ratio, SNR, can vary from 10 dB to −5 dB [10].
3. The quality of the signal transportation from the radio station to the air traffic

control facility where the signal is analysed.

• Flight crew language is English or the local language of the ground station [6].
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• FCs have very different accents usually, but not always, relating to the flight company
country. Countries that are in the routes of international flights have even higher rates
of different accents.

• Communications from flight crew to controller can, similarly to the controller’s ones,
be decomposed as: call id + command + qualifier 1 + qualifier 2. Alternatively, if it is a
readback: command + qualifier 1 + qualifier 2 + call id.

Finally, there is environmental information that can be exploited. Each ATCo has a
list of flights that either are in their sector, are about to enter into it or are of interest (e.g.,
because they fly near the sector border). This information is provided by a flight data
processor (FDP) that ensures that the list of flights is updated with new incorporations and
cancellations once the flight is no longer of interest.

The level of automation is having continuous improvements and enhancements intro-
ducing new functions to assist the ATCo for better situational awareness and a reduction
in workload supporting them to focus attention when and where needed. Within these
new functions it is the ASR Project that requires a new Human–Machine Interface (HMI)
presentation. The new methods of interaction have to be compatible with the other systems
and subsystems within the CWP to benefit the controller’s duties.

Identification of the key information present in the communication exchange is nec-
essary to provide the new HMI. Information extraction from written text can follow very
different approaches and several factors (language, domain, entity type) impact the se-
lected technique [11,12]. The extraction of information in the ATM domain has mainly used
knowledge-based methods and machine learning models [5,13].

The work performed in the project uses as baseline an ASR prototype that has been
developed between Enaire, Crida and EML to support the quantification of the controller’s
workload [14,15]. The prototype follows a hybrid architecture and uses a knowledge-based
method to identify the callsign. The performance of the algorithm was considered adequate
in its previous use, thus the latest investigations in information extraction have not been
considered in this work.

2. Materials and Methods

As presented in the introduction, the presence of the flight identification or callsign is a
common feature in the communications procedures in current operations. Callsign recognition
and illumination is considered as a quick win by Enaire that can be implemented in any CWP
as they are equipped with a radar surveillance service that can display the radar track and
callsign identification regardless of the unit where they are installed: en-route/terminal-
manoeuvring area, TMA, or in tower, TWR, units. The work hypotheses are:

Hypothesis 1 (H1). The integration of an ASR system in an operational CWP and voice commu-
nication system, VCS, can be performed without negatively impacting the other system.

Hypothesis 2 (H2). ASR will decrease ATCos’ workload by guiding the attention of the controller
to the aircraft demanding an action.

Hypothesis 3 (H3). ASR will increase of ATCos’ situational awareness by quickly identifying new
flights entering the sector or flight crews requesting actions from ATCos.

Hypothesis 4 (H4). ASR will increase aviation safety by illuminating the callsign coming from an
ATCo’s utterances ensuring they are addressing the proper aircraft.

To test the hypothesis a prototype that meets several ATM related requirements was
developed and later tested through two different and complementary approaches: a real-
time simulation and a statistical analysis. Real-time simulation is a human-in-the-loop
technique that tests a concept in a controlled, repeatable, and realistic environment. The
technique is well established in the air traffic management environment to validate tools
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and concepts [16,17]. It provides qualitative and quantitative feedback. Some aspects of
the technique that need to be taken into account are the level of realism of the environment,
the adequacy of the test subjects, and the number of runs that takes place.

The real-time simulation was performed on Crida’s premises with Enaire controllers,
and a prototype developed by Indra the ASR engine provided by “EML Speech Processing
Server” in November 2021. The environment realism was high as operational controller
working positions and voice communication systems were used as hardware while the
simulation scenarios were based on Spanish operational scenarios. The test-subjects were
Enaire’s operational controllers with over 10 years of experience, supported by professional
pilots acting as pseudopilots. The number of runs was low as only six runs were performed.

The statistical analysis was designed to address two weaknesses of the real-time simu-
lation, RTS. One of the weaknesses is the difference between ATCo–Pilot communications
in a laboratory and operational environments. The second one is the low statistical feedback
due to the low number of runs. The statistical analysis uses operational recordings from
Spanish airspace. The analysis took place in February–March 2022.

2.1. Requirements to Be Met by the System

To perform the experiment several requirements have been identified on the ASR
engine and on the voice recognition system, VRS.

2.1.1. Basic ASR Engine Requirements for Callsign Identification

Due to the ATM application in which voice recognition is going to be used, there are
three outstanding requirements:

• The voice recognition system, VRS, shall be able to function without connection to
sources external to the area control centre, ACC.

• The callsign illumination must be produced as soon as possible once the communica-
tion has started.

• The ASR engine shall be able to process the utterance in English and the local language,
when local languages are allowed.

The first requirement limits the available ASR engines, as it must be autonomous.
Enaire considers flight management as a strategic field, and therefore, an ACC must be
able to provide its service even if it is isolated. This is a requirement set by Enaire that may
not be shared by other air navigation service providers, (ANSP). This requirement may
nevertheless change in the near future to align with the strategy to deliver the European
commission’s Digital European Sky [18] and Enaire’s strategic plan [19].

The second requirement implies that the ASR engine must be able to perform in
streaming and provide partial transcriptions. As in most of the use cases, the callsign is at
the beginning of the phrase and the time of the initiation of these partial transcriptions is
also critical. In project PJ.10-W2-96 ASR [20,21], the requirement has been established at
one second after the ATCo has said the callsign. This value needs to be validated.

2.1.2. VRS Requirements for Callsign Identification

The fact that a mistake in callsign illumination can mislead the ATCo which in turn
may provoke an accident puts in place a new set of requirements on the VRS:

• It is preferable not to have a callsign illumination rather than a wrong callsign illumination.
• The VRS will use the sector flight list from the CWP to improve its performance.

The callsign detection algorithm also should include the callsign rules defined by
ICAO [1] and is able to detect a flight indicative independently of the method or the
language used by the controller (pilot) to address it. These methods include:

• The radio callsign e.g., Beeline/Cactus.
• The company name e.g., Brussels Airlines/US Airways.
• ICAO designator using aeronautical alphabet. e.g., Bravo Echo Lima (BEL)/Alpha

Whiskey Eco (AWE).
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• All of the possible modes to pronounce a number. e.g., one zero zero, ten zero, one hundred.

ATCos may pronounce more than one callsign in one utterance, e.g., because they give
instructions to different aircraft or because they are informing a flight about a traffic that
may influence them.

ATCos and FCs are allowed to refer only to partial callsigns once the first communica-
tion is established and there is no possibility of confusion.

2.2. Real-Time Simulation

To investigate the benefits of callsign illumination through a real-time simulation, a
VRS has been integrated in an Enaire’s operational CWP. The VRS was developed by Indra
based on Voice, a recognition system developed by Crida using EML’s ASR engines. The
ASR models contained have been developed jointly by EML and Crida [14] and are able to
work on-the-fly processing the audio signal in real-time streaming.

Enaire’s ATM system is SACTA (Air Traffic Control Automatic System) developed
by Indra. The communication system that processes audio signals has recently been
upgraded to COMETA (Integrated Voice IP Communication into SACTA). Figure 1 presents
the architecture used. The audio is extracted by the audio extractor and sent to Voice
for speech and event recognition. The delivery module then sends the event (callsign
highlight) information to the SACTA CWP. The SACTA CWP also sends the environmental
information to Voice via the delivery module.
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Figure 1. System Architecture.

The VRS module uses environment information to improve the recognition rate and
allows the system to perform a safety check on the correct identification of the flight.

COMETA processes the audio signal following the aeronautical standard [20]. The raw
audio is extracted and provided to the VRS. COMETA distinguishes between controller
and FC communications. The signal is tagged with a flag indicating the source, FC (0)
or ATCo (1), Figure 2. The ATCo can be in charge of one or several frequencies for radio
reception (RX) and transmission (TX) depending on the sector configuration, E.g., one
planner controller may listen not only to the frequency of their sector, but also to the
frequency of the adjacent TMA sector to increase the situational awareness of departing
flights. The system is linked to the frequency that the controller transmits (TX).
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The list of possible flights of interest can be provided to the VRS from two different sources.

• The FDP has the list of flights that are of interest for the ACC (composed of several
sectors). The FDP ensures that the list of flights in each CWP is updated with new
incorporations or cancellations once the flight is no longer of interest.

• The CWP has the list of flights that are of interest for the sector. This list is smaller
than the previous one, but some flights may not be covered, for example, last minute
flights deviated due to weather.

After performing a cost/benefit analysis regarding the size of each file, the system
implications, and the number of flights that may be impacted, Enaire decided that the CWP
would be the one providing the list. This list is provided to the dynamic lexicon update
feature of “EML Speech Processing Server” (to enhance the callsign detection) and to the
detection algorithm. It is updated dynamically.

ASR is provided to the “Voice” application with the “EML Speech Processing Server”.
The recognition engines are set for real-time streaming transcriptions with partial results,
using the latest state-of-the-art technologies in ASR such as bidirectional long-short term
memory (BILSTM) neural networks [22] for acoustic modelling, voice activity detection
(VAD) [23] and a dynamic lexicon update feature. Due to the different characteristics
of the communications, two different recognition models have been developed. Both
models use the same multilingual (English and Spanish) acoustic model trained with
1000 h of recordings (about 400 h of English and 600 h of Spanish recordings out of the ATM
domain) and then adapted with approximately 100 h of ATM domain recordings, which
were manually transcribed from operational controller communications (these contain
phrases that can be in Spanish, English, or mixing both). The difference between both
recognition models is on the two class-based language models, one developed for controller
communications (ATCo), and one for flight crew communications (FC). The ATCo language
model is a more mature model that has been trained with operational transcriptions
(approximately 90 k) gathered along several years of collaboration between Crida and
EML. The FC model is a newer model that has been adapted with approximately 14 k
transcriptions (from only 12 h of flight crew operational recordings).

The development of the Spanish–English acoustic model addresses some of the chal-
lenges associated with multilingual speech [24]: the simultaneous use of several languages
in one sentence and the different speech rates related to each one.

The “EML Speech Processing Server” dynamic lexicon update feature enables lan-
guage model class entries to be defined at runtime without having to restart the recognition
engines, allowing the “Voice” application to update for a given use. The waypoint class
allows the use of the same language model for different ACCs by only changing the list of
entries for the waypoint class. The callsign class allows to quickly adapt the model to a
specific sector, date, and time by providing the ATM-planned flights.
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The command and callsign detection algorithm analyses the text recognised by the
“EML Speech Processing Server” and classifies the words according to the most probable
value. The algorithm follows a rule-based grammar approach [25], that was developed
to support the analysis of the controller’s workload calculation through a postprocessing
method that included several different sources of information including flight plans, radar
tracks and radio communications [14,26]. It not only classifies callsigns but also the different
type of commands that are issued by controllers such as flight level or speed change. The
algorithm was updated to take into account the information provided by the flight plans.

ICAO annex 10 [6] rules for callsigns are used within the algorithm to identify a
possible callsign. These rules indicate that callsigns have three letters to identify the aircraft
operator, followed by between one and four alphanumeric characters. The algorithm also
includes the requirements listed in the VSR requirements for callsign identification para-
graph. Another input to the algorithm is a list of keywords that provides possible callsign
identification (radio callsign, company name, and ICAO designator) of the companies
that are (or have been) authorised to operate in Spain. Finally, the algorithm increases
or decreases the probability of callsign taking into account the language model; as an
example, in controllers’ utterances the callsign is usually at the beginning of the phrase and
is followed by a command.

Once a sequence is classified as a probable callsign, it is compared against the list of
possible callsigns received from the FDP. This list has the identifications of the flights that are in
or near the sector and are of interest to the controller. In the implementation performed, only
complete callsigns are recognised: only when the complete set of alphanumeric characters has
been completely transcribed, identified by the callsign detection algorithm and are present in
the FDP list, the VRS considers that there is a match. When a callsign is positively detected, a
file with the information is created and sent to the Human–Machine Interface, HMI. The HMI
displays a white circle around the radar track that flashes during a configurable time, currently
set as 5 s, see Figure 3. The HMI is able to highlight up to 5 callsigns simultaneously, as more
than one communication can be performed during this time.
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Figure 3. Radar track highlight following callsign detection (Captured from Supplementary Materials).

The real-time simulation addressed two sectors of the Madrid Flight Information
Region, FIR, which has medium complexity. The sectors are Zamora–Toledo Integrated,
LECMZTI, in blue in Figure 4, and Castejon–Zaragoza Integrated, LECMCZI, in red. The
figure has been obtained from Enaire’s Aeronautical Information web application [27].
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This configuration is an operational configuration that is used at night. This configura-
tion facilitates the evaluation of the validation objectives:

• The sectors have several entry points where the flight crew performs their first call
(related to the highlight of callsigns on the CWP from pilot utterances).

• The sectors are quite wide and integrate nine control volumes. This implies that there
are very different traffic flows that require different types of control and facilitates
the creation of situations where the traffic is focused in one area or disperse along the
whole sector (related to both, the highlight of callsigns on the CWP from the pilot and
controller’s utterances).

• There are several airports within the control volume, the main one being Madrid- Bara-
jas airport, LEMD in its ICAO code. This airport was used in the north configuration
and generated traffic flows to/from both sectors.

Controllers were operational controllers from Madrid FIR; thus, they were familiar
with the scenario and the control rules. The control operation rules used were the opera-
tional ones with one simplification: the lower level to hand over traffic to TMAs and airport
in all the volumes was the same, FL210.

Two types of exercise were used. Both had from medium-to-high traffic loads that
supported the test of technical and operational requirements. The traffic for the exercise
was created by adapting real traffic from 14 July 2019. The traffic adaptation included
the modification of callsigns, flight levels and entry times. The traffic sample covered
67 different airlines plus 10 general aviation registration numbers.

The exercises were performed in an integrated controller position: one controller performs
the executive and planning roles. One pseudopilot was assigned to each position. The
pseudopilots have an active pilot license and have participated in previous validation activities.

The first exercise had a constant flow of aircraft that entered the controlled sectors
from collateral dependencies and adjacent sectors. There were traffic peaks to concatenate
calls and facilitate situations where the controller focused on one part of the sector. The
traffic flight followed instrumental flight rules, IFR. There were flights from commercial
airlines and general aviation.

The second exercise started in one sector configuration (one controller in charge of
both sectors, Config R21 is used at nights with low traffic). The traffic steadily increases and
the exercise leader, acting as supervisor, decides to split the sectors around minute 10. The
traffic continues increasing until it starts to decrease. Near the end of the exercise, the traffic
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is low again and both sectors are grouped again. The exercise ends with one controller
managing both sectors. The exercise allows the analysis of the requirements related to
sectors splitting and grouping, the rapid successive communications from different pilots,
and the overlap of communication from different aircraft. Traffic followed instrument flight
rules (IFR), visual flight rules (VFR) and operational air traffic (OAT).

The simulation took place across two days. Each day controllers performed three
runs, one with the reference scenario (without the ASR) and two with the solution one.
Controllers rotated between the different sectors in each run. The results were gathered by
data logs, questionnaires, debriefings, and observations.

2.3. Statistical Approach

As the RTS had some limitations, i.e., the number of scheduled runs was low, the
number of controllers and pseudopilots was limited to two of each, and finally, the utter-
ances that would be analysed were from a simulation environment which could impact
the natural language of the speakers. To overcome these limitations a statistical approach
was planned. The statistical approach includes the analysis of operational recordings from
different types of sector and several actors, both controllers and flight crew.

The statistical test was performed between January and February 2022 with recordings
from 2019. It was decided to use recordings from 2019 due to the impact of the COVID-19
pandemic on the amount and diversity of flights between 2020 and 2021.

Operational recordings fed the Voice prototype to obtain information on the callsign
and event identification. The outcomes from the prototype were compared to a gold
standard manually created, and rates regarding callsign and command identification have
been obtained through comparison.

From the architectural point of view, this approach used part of the previous RTS
prototype. It used the “Voice” prototype and callsign algorithm to transform the audios
to text and identify the callsigns. Flight plans and environment data were also provided,
although not dynamically, and finally the audios did not come from the COMETA system
as it was not deployed at the time.

The operational environment for the statistical approach belongs to the sectors Lower
Castejon (CJL), Upper Castejon (CJU) and Santiago (SAN), all of them from Madrid ACC
(LECM). CJL and CJU were also used in the RTS. Figure 5 [27], presents the locations of the
sectors within Spain’s airspace, SAN in light blue and CJL and CJU in dark blue.
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These sectors were selected due to their complementary characteristics that provide a
wide sample of technical (i.e., signal-to-noise ratio, native speakers’ origin) and operational
(i.e., type of commands) characteristics:

• CJL is a sector with good radio coverage whose main traffic flows are to and from
Madrid-Barajas Airport, the major Spanish airport. It limits with Madrid TMA and the
surface. Control service is provided to all aircraft from FL210 to FL325. Information
service is provided from SFC to FL210 outside the TMA/airport areas and airways.

• CJU is a sector with good radio coverage and quality whose main traffic flows are
to and from Madrid-Barajas Airport, and over flights to the south of Spain. Control
service is provided to all aircraft from FL325 to FL660.

• The SAN sector includes a large proportion of oceanic airspace that has lower radio
coverage compared to CJL and CJU. Its main flows are overflights to/from the America,
and to/ from United Kingdom. Free route airspace is implemented in this sector.
Control service is provided to all aircraft from FL210 to FL660. Information service is
provided from SFC to FL210 outside the TMA/airport and control areas.

3. Results

Technical results were gathered from system and data logs, while operational results
have been collected from questionnaires, observations, and debriefings.

3.1. Technical Results

The real-time simulation produced 1139 communications from ATCo and FC. Several
of the recordings were disregarded in the final analysis because they were just noise or
did not contain a callsign. The traffic sample covered 67 different airlines plus 10 general
aviation registration numbers that were addressed either in Spanish or English according
to the airline origin.

Callsign recognition rates obtained from the RTS analysis appear in Table 1. The row
speaker indicates the number of callsigns contained and detected in controllers’ or flight
crew utterances. No false recognition was performed.

Table 1. Callsign recognition from RTS analysis.

Speaker Callsigns Detected Call Sings Detection Rate

Controller 859 721 84%

Flight Crew 687 457 67%

Regarding the identification of numbers within callsigns:

• Thousands are correctly identified (100%);
• Hundreds are correctly identified (100%);
• Numbers between 11 and 99 (e.g., 13, 18, 34) have very high recognition rates (98%);
• Numbers with triple have different success rates;

◦ 111 (triple one) was transcribed correctly 88% and one time as 341;
◦ 666 (triple six) had 67% success but was transcribed 326;
◦ 777 (triple seven) was the least accurate of the group being transcribed as 37 in

84% of the utterances;
◦ 888 (triple eight) has a success of 75%, but was transcribed as 68 two times.

One problem detected during the analysis is that if the transcription misses the ICAO
name of the company, the algorithm may identify groups of four numbers and letters as
possible callsigns. Due to the flight list check performed these wrong identifications were
not presented to the CWP.

The statistical approach used 449 operational recordings from ATCo and FC utterances.
Several of the recordings were disregarded in the final analysis because they were just
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noise or did not contain a callsign. The traffic sample covered 29 different airlines from
18 different countries.

Callsign recognition rates obtained from the analysis appear in Table 2. No false
recognition was performed. An additional study was performed in the statistical approach.
The row first call/request in the table is a subset of the pilot utterances where the FC
initiates the communication, i.e., the first time a flight enters a sector or a request from the
pilot not expected by the controller. These communications are of special interest as they
imply a change to the controller’s attention focus.

Table 2. Callsign recognition from statistical analysis.

Speaker Callsigns Detected Call Sings Detection Rate

Controller 143 127 87%

Flight Crew 158 77 49%

Flight Crew First call/request 65 38 58.5%

In the statistical analysis a review taking into account the airline was also performed.
The percentage of correctly detected callsigns is higher for ATCOs than for flight crew

in both cases as the algorithm is optimised for the ATCo utterances.
Regarding the comparison between simulation and operational recordings, the per-

centage of the ATCos are similar but the percentage of the flight crew is better in the
simulation. This was already expected as the quality of the recording (ratio signal-to-noise)
is better in the simulation and the accent (mother tongue) of the pseudopilots is unique
(Spanish) while the one from the operational recordings is very diverse with companies
from 18 different countries.

No callsign was wrongly recognised as only complete callsigns were detected. Feed-
back from the controllers indicated that they would like to have higher recognition rates
even if some callsigns were incorrectly detected and highlighted.

In the statistical analysis detection per company was also performed. Table 3 presents
the analysis. In the table the companies with less than five appearances have been removed
as they have been considered that the sample is too low to infer a tendency.

Table 3. Callsign detection per company and speaker.

Airline Controller Utterances Flight Crew
Call Sings Detected Rate Call Sings Detected Rate

American
Airlines AAL 5 4 80% 4 2 50%

Air Europa AEA 8 8 100% 7 6 86%

Aegean airlines AEE 9 6 67% 6 0 0%

Air Nostrum ANE 5 5 100% 5 5 100%

Condor CFG 9 8 89% 8 3 38%

Iberia IBE 8 8 100% 11 11 100%

Iberia Express IBS 7 7 100% 4 1 25%

Ryanair RYR 18 17 94% 23 11 48%

Tap Portugal TAP 7 7 100% 11 4 36%

Thomson TOM 14 13 93% 18 12 67%

Emirates Airlines UAE 11 11 100% 14 4 29%
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From the analysis of the utterance according to the company, it can be inferred that in
controllers’ utterances, most of the airlines have over a 90% detection rate except Condor
(89%), American Airlines (80%), and Aegean Airlines (67%).

In flight crew utterances the detection rate highly varies from one company to another.
Spanish companies have high detection rates, i.e., Air Nostrum (100%), while for other
companies the detection varies from 67% (Thomson) to 29% (Emirates), with the notable
exception of Aegean Airlines that is not recognised anytime.

The callsign illumination took 3.02 s after the initialization of the utterance to the
illumination in the CWP during the RTS. If the callsign was at the end of the phrase the
reaction time of the prototype was lower, 0.93 s.

3.2. Operational Results

Operational feedback was obtained in the RTS regarding human performance (work-
load, accuracy, timeliness, and coherency of the information provided) and safety (situa-
tional awareness and errors induced by the prototype).

3.2.1. Human Performance

Workload was collected through Nasa-TLX [28], tailor-made questionnaires, and
debriefings. The Nasa-TLX scored 9.1 (out of 20) for the reference and 7.9 (out of 20) for
the solution questionnaire. The tailor-made questionnaire and debriefings indicated that
workload slightly decreased in the solution scenario.

Accuracy was collected through tailor-made questionnaires, debriefings, and data logs.
The feedback was that the tool needed improvement in the recognition rates to be able to
effectively support them. Controllers indicated that they would prefer some occasional
false positive callsign recognised if that would mean higher recognition rates.

Timeliness was collected through tailor-made questionnaires, debriefings, and data
logs. The timeliness rated as adequate for the callsigns at the end of the utterance but
inadequate when the callsign was at the begging of the utterance.

Feedback on the coherency of the information provided was collected through tailor-
made questionnaires, and debriefings. Controllers were satisfied with the flexibility of
the tool that allowed them to address the flight using very different approaches i.e., using
English or Spanish, the radio name, spelling, numbers in hundreds, thousands, double, or
triple. They also appreciated the HMI of the symbol on the radar track, its font, colour, and
duration. A request was made to make the HMI different to be able to distinguish when
the callsign highlight was from controller or flight crew utterances.

3.2.2. Safety

Situational awareness was collected through SASHA questionnaires [29] and debrief-
ings. The overall score of the SASHA questionnaire was 4.0 (out of 6) in the reference
questionnaire and 4.4 (out of 6) in the solution questionnaire. The situational awareness
improved slightly with the use of VRS. During the debriefings and tailor-made question-
naires, controllers stated that situational awareness was improved but they considered that
the VRS recognition rates were not high enough to allow them to completely confide and
exploit the tool. They consider that higher callsign recognition rates and timeliness would
further improve their situational awareness.

Errors induced by the prototype were collected through debriefings and data logs. No
error resulted from the introduction of the VRS. No false recognition was performed during
the simulation. This can be attributed to the requirement that indicates that only callsigns
in the FDP list with the complete alphanumeric sequence provide a positive detection.

3.2.3. Additional Findings

Finally, when asked by each individual functionality, controllers appreciated especially
the identification of flights from flight crew utterances. They considered that with higher
robustness (meaning accuracy and timeliness) it would support to develop their tasks

41



Aerospace 2023, 10, 433

more efficiently, reduce workload and increase situational awareness. They considered
that identification of flights from controller utterances could be especially helpful when a
controller needs to understand the sector situation but is not located directly in front of the
screen. On these occasions, following the performance of the controller on the radio can
be difficult and having a callsign highlighting the flights from controllers’ utterance will
support them. At Enaire this situation happens:

• During a shift change. The entering controller may sit near the departing controller during
a period of time to be able to grasp the situation before actually controlling the flights.

• When new controllers have onsite training. The new controller may be near the
experienced controller following the issued commands, or a supervisor may be near
the new controller.

4. Discussion

The experiment was able to connect a preindustrial VRS prototype with an ASR engine
with operational systems. This connection included an operational SACTA 4 CWP that
provides context information in real time to the VRS (flight plan list in this approach),
receives information from the VRS and presents it to the controller in a coherent approach
with the rest of the CWP information. The exercise also included connection with an
operational voice communication system, COMETA, that provided the ATCo–Flight Crew
communication exchange following the aeronautical standards. This integration was
performed without any impact to either of the systems, demonstrating the feasibility of
the technical solution. It is especially significant that no delay was introduced in the voice
exchange between both actors. Hypothesis 1 is confirmed.

Although the callsign recognition was not as high as in other controller speech recog-
nition studies [30,31], controllers’ workload was reduced, and situational awareness was
increased. Hypotheses 2 and 3 are confirmed. This outcome aligns with other studies [32],
about the importance on high callsign recognition rates on the ATCo’s perception of ASR
technology support. The improvement in workload and situational awareness was not as
high as expected due to the accuracy and timeliness of the VRS prototype.

The controller model has higher recognition rates than the FC model. Callsign recog-
nition in FC utterances from the RTS was higher than from the operational ones. These
outcomes were already expected due to the different maturity of both voice models; the
inherent aspects of operational FC utterances with worse signal/noise relation, and higher
number of different accents when compared with the controller model.

Callsigns in Spanish or with a Spanish accent have higher recognition rates than the
rest. This outcome is attributable to the callsign training database which is composed
mainly of Spanish controllers’ utterances. The recent update with FC utterances has not
been enough to cover the gap.

The bad results of some companies can be related to two different causes, training of
the ASR model and phonetization of the company.

A low representation of the company in the training database would reflect in both
the callsign identification from controller and flight crew utterances. Two examples of this
effect can be identified in Aegean airlines in the statistical approach (67% ATCo recognition
rate and 0% FC recognition rate), and Nile Air airline (Nile Bird or NIA callsign) in the
RTS execution (0% FC recognition rate). Regarding this last example, Nile Air, it should be
noted that, during the RTS, controllers spelt the callsign (NIA) as they were not familiarised
with the airline. By doing this, they obtained a 100% recognition rate.

An incorrect or incomplete phonetization of the airline callsign would also provide
low recognition rates. The airlines’ callsigns are phonetised in English and Spanish, and
enriched with the training database. One example of this problem is the airline Atlantic
Airways whose callsign is Faroeline. Faroeline is correctly transcribed and identified in
Spanish utterances but was transcribed as Flyer nine in pilot utterances. The lack of training
could be enriched by enlarging the possible phonetisation with the native language of
the airline country. Nevertheless, this method has its drawbacks as depending on the
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airline company, the nationality of pilots can be very diverse. As an example, Ryanair
has a multinational group of pilots which, in 2019, counted with people from 53 different
nations [32].

Future implementations where controller utterances are used to automatically imple-
ment the command on the CWP will require the recognition of partial callsigns, as already
performed in some experiments [33]. This approach requests the review of the algorithm
to minimise the identified problem of grouping alphanumeric characters not related to
callsigns. The trade-off between false positives and recognition rate is something that needs
to be investigated.

The FC usually speak differently when they start the dialogue. The FC wants to grab
the attention of ATCos and are conscious that the controllers need to change the attention
focus. Therefore, when initiating contact or check-in calls, they usually speak louder,
slower and pronounce more clearly. The identification of these flights was one of the most
appreciated by controllers, which supports the feedback provided in other ATC speech
recognition experiments [34].

As already mentioned, other studies have higher callsign recognition rates [30,35].
These studies use a statistical approach for the information extraction, such as machine
learning algorithms or deep neuronal networks. Comparison between both methods
indicate the rule-based algorithm outperforms the statistical approach [36]. It should be
noted that the statistical approach method is very dependent on the training database [35].
The method used, rule-based grammar, enhanced with the improvements identified in
database training and company phonetisation, should be compared with a statistical
approach that takes advantage of the Enaire’s database.

Regarding the timeliness, the difference in the recognition time depending on the
position of the callsigns in the utterance impacts greatly the support perceived by the
controller. Further investigation in the ASR engine, ASR models, and lexicon is being
conducted in order to reduce the time of partial results sent by the “EML Speech Processing
Server” to then be processed by the “Command & callsign detection algorithm” within the
“Voice” application.

Although situational awareness improved and no error was induced by the VRS,
controllers did not consider the use of the identification of the callsign from a controller
utterance as a safety tool. They considered this use of VRS as helpful to provide context
information to other controllers. Hypothesis 4 is rejected.

As the feasibility of the integration of the VRS system has been demonstrated and
the identification of callsigns from FC utterances provides benefits in terms of workload
and situational awareness, the way forward is the improvement of recognition rates and
timelines at the beginning of the utterance following the approaches previously identified.
The identification of callsigns from controller utterances is also of interest to support
controllers in handover and on-hand training. Improvements in recognition rates and
timeliness are less critical in this case, although also necessary.

Supplementary Materials: The following supporting information can be downloaded at: Video:
https://www.youtube.com/watch?v=qLQVoS4Qkms (accessed on 28 February 2023).
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Abstract: Recently, artificial intelligence and data science have witnessed dramatic progress and
rapid growth, especially Automatic Speech Recognition (ASR) technology based on Hidden Markov
Models (HMMs) and Deep Neural Networks (DNNs). Consequently, new end-to-end Recurrent
Neural Network (RNN) toolkits were developed with higher speed and accuracy that can often
achieve a Word Error Rate (WER) below 10%. These toolkits can nowadays be deployed, for instance,
within aircraft cockpits and Air Traffic Control (ATC) systems in order to identify aircraft and
display recognized voice messages related to flight data, especially for airports not equipped with
radar. Hence, the performance of air traffic controllers and pilots can ultimately be improved by
reducing workload and stress and enforcing safety standards. Our experiment conducted at Tangier’s
International Airport ATC aimed to build an ASR model that is able to recognize aircraft call signs
in a fast and accurate way. The acoustic and linguistic models were trained on the Ibn Battouta
Speech Corpus (IBSC), resulting in an unprecedented speech dataset with approved transcription that
includes real weather aerodrome observation data and flight information with a call sign captured
by an ADS-B receiver. All of these data were synchronized with voice recordings in a structured
format. We calculated the WER to evaluate the model’s accuracy and compared different methods
of dataset training for model building and adaptation. Despite the high interference in the VHF
radio communication channel and fast-speaking conditions that increased the WER level to 20%, our
standalone and low-cost ASR system with a trained RNN model, supported by the Deep Speech
toolkit, was able to achieve call sign detection rate scores up to 96% in air traffic controller messages
and 90% in pilot messages while displaying related flight information from ADS-B data using the
Fuzzy string-matching algorithm.

Keywords: ATC; ASR; HMM; DNN; RNN; WER; VHF; ADS-B; METAR; GMTT; speech corpus; deep
speech; call sign detection; levenshtein distance; fuzzy string matching

1. Introduction

The purpose of Air Traffic Control (ATC) is to ensure the safe and efficient movement
of aircraft within a specific controlled airspace. It helps prevent collisions between different
aircraft and between aircraft and the surrounding obstacles, maintaining the order of
air traffic and allowing quick support and collaboration in case an aircraft declares an
emergency [1].

Air traffic controllers monitor the position of any aircraft assigned to their airspace
and ensure aircraft separation and distancing using primary or secondary radars. The
communication with pilots is ensured via Very High Frequency (VHF) radio equipment.
Any change in the aircraft’s heading or assigned flight level is subject to ATC approval,
which ensures the appropriate horizontal and vertical separation between aircraft on the
ground or in the controlled airspace is thoroughly respected.
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L. Rabiner [2] defined ASR as “as a technology that involves the conversion of speech
signals into a sequence of words by a computer program”. Every ASR system should
consider the type of speech recognizer, which can be speaker-dependent or speaker-
independent. The first type requires prior training for each user to create voice patterns for
hypothesis comparison. This kind of system is more accurate and has better performance.
It can be designed for voice command solutions with limited vocabulary pronounced in
the flight cockpit. Our application, dedicated to Air Traffic Control Officers (ATCOs), aims
to recognize the pilot’s spoken message and display flight data captured by the ADS-B
receiver. It is a multi-user system or a speaker-independent recognizer, where the imple-
mentation is more complex considering the variety of accents and mispronunciations. It
thus requires more hardware capabilities, such as memory and processor speed. In the
given conditions, such systems could not achieve an accuracy lower than 10% word error
rate (WER) [3].

In this paper, we introduce an ASR based on DNN, a new end-to-end RNN, and the
Fuzzy string-matching algorithm to enhance ATC efficiency by reducing cognitive work-
load in dense traffic situations, especially in airports not equipped with radar. We use an
Automatic Dependent Surveillance-Broadcast (ADS-B) receiver to provide captured flight
data of all surrounding aircraft synchronized with recorded VHF voice communication.
After training the ATC datasets and generating both acoustic and language models, the
ASR system was able to recognize, with a reasonable WER, the spoken pilot message by
matching it with the decoded call sign from ADS-B data. This threshold rate matching
enables the call sign detection and display of flight-related information for ATCOs, such as
speed, heading, altitude, distance, and bearing to the airport.

2. Related Work

D. Becks [4] briefly reviewed the state of the art of automatic speech recognition
systems with types and modes of operation. Additionally, Georgescu [5] provides a
comparison study between ASR performance and hardware requirements.

Recently, the FAA’s (Federal Aviation Administration) final report on ASR method-
ologies [6] concluded that transformers have had a significant impact on audio and NLP
fields, and their innovative architecture has been successfully integrated into various
algorithms [7].

Since 1980, considerable progress has been made in ASR and applied to the ATC
domain. A good description of the state-of-the-art ASR systems and their application for
ATC was provided by Van Nhan Nguyen [8].

2.1. ASR in ATC

Van Nhan Nguyen [8] described three ASR systems. The Hidden Markov Model
(HMM) approach has been the most widely used technique for the last two decades. It
is a simple and efficient solution with automatic training, but its main weakness lies in
discarding information about time dependencies. A hybrid approach was introduced to
overcome this weakness of HMM. This approach combines an Artificial Neural Network
and a HMM. A recognition accuracy rate of 94.2% was achieved by Wroniszewska [9]
using the K-Nearest Neighbor (KNN) classifier and Genetic Algorithms (GAs). Finally, an
interesting approach was proposed by Beritilli [10] using Dynamic Time Warping (DTW)
and Vector Quantization-Weighted Hit Rate (VQWHR), which is a robust solution for noisy
environments such as ATC.

Although the hybrid approach combines different algorithms and techniques, chal-
lenges in ASR systems still exist. To address issues such as poor signal quality from
VHF communication, ambiguity in commands and instruction values, or the use of non-
standard phraseology and mispronunciation in different accents (native and non-native
speakers) [11], a new approach based on utilizing contextual information is introduced
to improve the performance and accuracy of ASR in ATC as a post-processing approach
based on syntactic, semantic and pragmatic analysis.
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2.2. Contextual Knowledge in ATC

Syntactic and semantic analyses [12,13] consist of parsing the result of recognized
words from ASR systems and eliminating invalid sentences or words by respecting gram-
matical rules highly inspired by ICAO standard phraseology. It helps correct misrecognized
out-of-vocabulary words with similar ones from valid words of the ATC vocabulary. Se-
mantic analysis is the process of testing the meaning of sentences. It can help resolve
ambiguity and recognize words despite background noises [14].

2.3. Call Sign Detection (CSD)

The ability of an ASR system to detect accurate call signs in ATC communication is
measured by the CSD rate. In 2018, in collaboration with IRIT (Institute for Research in
Informatics of Toulouse) and Safety Data-CFH, Airbus organized a challenge for 22 teams
for automatic speech recognition in ATC and call sign detection [15]. The Airbus dataset
consisted of 40 h of manually transcribed voice communication with various accents
and a high speech rate over noisy radio channels. The best result achieved was a 7.62%
WER and 82.44% CSD rate, scored by the VOCAPIA-LMSI team. In 2020, the ATCO2
project [16] added an NLP module to extract the call sign from a recognized spoken
utterance matched with surveillance data (ADS-B and radar) and improved the WER from
33% to 30%. The results showcased in [17,18] reported up to 60.4% relative improvement
in call sign recognition by boosting call sign n-grams with the combination of ASR and
NLP methods to use surveillance data. Finally, by leveraging surveillance information,
Blatt, A et al. [14] significantly improved the accuracy of call-sign recognition in noisy air
traffic control environments. The model showed a 20% improvement compared to existing
methods. The study by Shetty et al. 2022 [19] focused on command extraction, including
the recognition of call signs as part of the semantic meanings of ATCo utterances. Their
study emphasized the importance of correctly interpreting various command components,
showing that call sign recognition can be achieved within 20 ms after full call sign has
been uttered, making it feasible for live data use. The research used gold transcriptions to
achieve call sign recognition rates above 95% and error rates below 2.5%. With automatic
transcriptions, they obtained recognition rates between 92 and 98% and error rates below
5% for most datasets. Finally, Garcia et al. 2023 [20] focus on how ASR can assist air traffic
controllers (ATCos) and flight crews (FCs) in their communication. It describes a project
under the SESAR2020 solution for ASR in call sign recognition, which was a collaboration
between Enaire, Indra, CRIDA, and EML Speech Technology GmbH. The ASR highlights
call signs on the ATCo screen to improve situational awareness and safety. The recognition
rates for this system were around 84–87% for controllers and 49–67% for flight crews.

3. Automatic Speech Recognition Pipelines
3.1. Conventional Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the assignment of transducing raw audio sig-
nals of spoken language into text transcriptions. It is based on statistical pattern-matching
using a combination of acoustic and language models, which depends on the complexity of
the application. This discussion covers the history of ASR models, from Gaussian Mixtures
(GMMs) and Hidden Markov Models (HMMs) to attention-augmented DNNs. The ASR
architecture is represented in Figure 1.
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3.1.1. Acoustic Model

With reduced vocabulary, the acoustic model converts pronounced words into phonemes
as minimal digital units. The speech processor compares the latter with stored word
patterns until it matches the spoken utterance. However, in a complex situation, as in
connected or continuous speech recognition, the analog voice signal is converted to digital
format, typically using a 16 kHz sampling frequency. For feature extraction, the digital
signal is transformed into the frequency domain using the Fast Fourier Transform (FFT).
Subsequently, standard techniques [21], such as Linear Predictive Coding (LPC) and Mel
Frequency Cepstral Coefficients (MFCCs), are applied. The feature numbers are determined
by comparing the resulting frequency graph with stored known sounds, which allows the
referencing of each phoneme found.

However, in circumstances involving a speaker with a specific accent and the noisy
environment of flight cockpits and radio communications, those feature numbers cannot
identify a unique sound to become a particular phoneme. The solution is to use probability
techniques such as Hidden Markov Models (HMMs) that represent each phoneme and use
feature numbers’ probabilities to calculate the transition state’s likelihood (high probability).

Recently, many techniques [22] based on neural networks (NNs) have been deployed
to replace the GMM and HMM by combining recurrent and convolutional neural networks
to predict states efficiently [21].

3.1.2. Language Model

The English language contains 44 phonemes; every word is a sequence of phonemes
with a large number of phonetic spelling possibilities. To overcome this problem, we gener-
ated a pronunciation dictionary of 907 unique words vocabulary from all ATC datasets,
known as a lexicon. All probable words delivered by the acoustic model are compared in a
second N-gram model [23] or an NN called a language model [24], which can predict the
next word from a set of preceding words by following standard grammatical rules. Finally,
a search engine combining all models can decode and continually recognize the most likely
word sequence.

The aim of the speech recognizer engine is to find the most probable word Ŵ given an
acoustic signal X as input.

Ŵ = argmax W P(W|X) (1)

P(W|X) is the probability that the word W was uttered, knowing that the evidence X
was observed.

49



Aerospace 2024, 11, 32

Equation (1) can be rewritten using Bayes’ law, as shown in Equation (2):

P(W|X) =
P(X|W) · P(W)

P(X)
(2)

P(W) is the probability that the word W will be uttered, P(X|W) is the probability that
the acoustic evidence X will be observed when the speaker speaks the word W, and P(X) is
the probability that X will be observed.

So, P(X) can be ignored as P(X) is not dependent on the selected word string. Conse-
quently, Equation (1) can be written as Equation (3):

Ŵ = argmax W P(W)P(X|W) (3)

where P(W) is determined by the language model, and P(X|W) is determined by the
acoustic model.

3.2. End-to-End Speech Speech Recognition

For optimization purposes and simplification of the training process of different
models, new end-to-end models are deployed for ASR [25]. It typically uses a type of
neural network called deep neural network (DNN) or recurrent neural network (RNN)
architecture. It is trained on large amounts of audio data with corresponding transcriptions.
It has been proven effective at transcription in many cases, especially in a noisy environment,
and can potentially simplify the ASR pipeline. The end-to-end model can directly decode a
feature-extracted X from spoken utterance to a sequence of words Y+ by integrating the
acoustic and the language model in one process, as shown in Figure 2; it is most often used
in a reduced and noisy dataset. Moreover, there is a possibility of including an optional
language model called a scorer to perform the best results.
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We notice that Connectionist Temporal Classification (CTC) [26] is the most popular
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4. ATC Speech and Contextual Data Specification
4.1. ATC Communication

The standard communication, known as International Civil Aviation Organization
(ICAO) Standard Phraseology, specifies all exchanged messages in Radio Telephony Com-
munication (RTF) between air traffic controllers and pilots in controlled airspace, as well
as in face-to-face communication between pilots and aerodrome staff in addition to the
communication between pilots in the cockpit [27]. Primarily based on English or the
national language, the pronunciation will be distinct between native and non-native En-
glish speakers. In some high-traffic situations, ATCOs must speak quickly to provide
information and instructions for all aircraft in their allocated airspace [28]. Consequently,
any recognizer system will return some broken or missing words due to the high speech
rate and noisy radio signals from VHF transmission [29]. However, in some cases, it is
possible to compensate for incorrect words by using the standard phraseology, as shown
in Table 1, in addition to the structured contextual data such as a Meteorological Airport
Report (METAR) and ADS-B flight information.
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Table 1. Example of ICAO phraseology.

Message

Tower Aircraft (Call Sign) Information Request Instruction

Pilot Tangier Approach ARABIA six four niner Descending flight level seven
zero

Request visual approach
runway 10

Aircraft (call sign) Tower Information Instruction

ATCo ARABIA six four niner Tangier Approach Negative, last wind two seven
zero degrees 25 knots

Report established for ILS
approach runway 28

Table 1 shows the structured and precise nature of aviation communication exchange
between the pilot and ATCO. Initially, the pilot, communicating with the Tangier Approach,
identifies their aircraft as ARABIA six four niner and informs the tower that they are
descending to flight level seventy FL70. The pilot then requests permission for a visual
approach to runway 10. This request is part of standard aviation protocol, where pilots
provide their current status and express their intended maneuvers. In response, the ATCO
addresses the aircraft with the call sign ARABIA six four niner, indicating that the request
is denied, possibly due to wind conditions, which are reported as two seven zero degrees at
25 knots. Instead of the requested visual approach, the ATCO instructs the pilot to prepare
for an Instrument Landing System (ILS) approach for runway 28 and to report back once
established on this approach. This exchange highlights the dynamic and responsive nature
of air traffic communications, where ATCOs provide critical instructions and adjustments
based on real-time conditions and operational requirements, ensuring the safety and
efficiency of aircraft operations. The dialogue reflects the essential characteristics of air
traffic communication: clarity, conciseness, and the conveyance of necessary information
for the safe conduct of flights.

4.2. ADS-B Data and Call Sign

Automatic Dependent Surveillance Broadcast (ADS-B) is a technology for monitoring
aircraft via satellite information. It improves the efficiency and safety of aircraft on the
ground as well as in the air. It contains the flight call sign decoded in 3 letters and numbers
for commercial flight, or equal to the aircraft registration number for private and general
flights as shown in Table 2, speed, altitude, vertical speed, heading, and GPS latitude
and longitude, as shown in Table 3. It is becoming the preferred method of real-time
surveillance for ATC. Because of its reduced cost and valuable information on the call sign
code, it is well suited for our application concept of ASR systems as the primary key for
pilot message identification.

Table 2. Call Sign annotation.

Call Sign Annotation Designator Transcription

RAM982 RAM royal air maroc niner eight two/air
maroc niner height two

MAC146T MAC arabia maroc one four six
tango/arabia one four six tango

CNTAV charlie november tango alfa
victor/charlie alfa victor

In Table 2, the provided call sign annotation data showcase the intricate and standard-
ized method of communication in air traffic control, particularly in articulating aircraft call
signs. For instance, the call sign RAM982 is designated as “RAM”, and its transcription
unfolds as “Royal Air Maroc Niner Eight Two”. This transcription method, where numbers
are spoken phonetically, is crucial for clarity, particularly in initial radio communication,
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where precision is paramount. Later, the call sign transcription can be reduced for more
straightforward pronunciation. Similarly, MAC146T, designated “MAC”, is transcribed
as “Arabia Maroc One Four Six Tango”. Each number and the letter ‘T’ (Tango) are pro-
nounced individually, denoting a specific flight or route. The third example, CNTAV,
despite lacking a clear designator, is transcribed using the phonetic alphabet as “Charlie
November Tango Alpha Victor”. Each letter is articulated using a corresponding word from
the phonetic alphabet, ensuring each character is unmistakably understood in potentially
noisy or disrupted communication environments. These examples highlight the critical
importance of standardized and clear communication in aviation, especially in identifying
aircraft, where even minor miscommunications can have significant implications for air
traffic safety and efficiency.

Table 3. Example of ADS-B data.

Date Time Call Sign Radar Alt Speed Head Vertical Lat Lon

6 July 2021 08:42:51 RAM982 5320 9000 ft 580 kt 320◦ 80 ft/min 35.46 −7.48

4.3. METAR

METAR is a weather observation report for an aerodrome and is periodically gener-
ated every 30 min. It contains wind direction and speed data, temperature, dew point,
cloud cover and heights, visibility, and barometric pressure. Aircraft pilots and controllers
primarily use it to determine runway-in-use and flight rules during takeoffs or landing op-
erations.

Table 4: Example of METAR report shows an example of a weather report of Tangier
Aerodrome made on 10/06/2021 at 10:30 UTC. The conditions were 15 kt wind from the
west with gusts up to 30 kt, temperature of 14 ◦C, 84% humidity, a pressure of 1012 hPa,
visibility of 7000 m, and few clouds at a height of 3000 ft. No significant changes occurred
in the next two hours.

Table 4. Example of METAR report.

Aero-Drome Day/Time Wind
Direction/Speed Visibility Clouds Temp/Dew Pressure

GMTT 101,330 Z 27015G30KT 7000 FEW020 14/12 Q1012 NOSIG

5. Methodology and Materials

Our methodology using ASR in the specific domain of ATC involves several steps;
the process begins with dataset collection for training and recording new actual speech
corpus IBSC for testing; this includes communication between pilots and ATCOs, such as
those with ground control and tower control, under different conditions, including varying
levels of clarity, background noise, and accents. Once collected, the audio data need to be
preprocessed. This stage involves cleaning the audio by reducing noise, normalizing audio
levels, and segmenting it into smaller, manageable parts for easier processing. The next step
is the accurate transcription of these audio files. This process is crucial and should include
not only verbal communication but also annotations for non-verbal elements like flight
and metrological information from ADS-B and METAR data, which is especially important
in the context of ATC communications. The core of our research will involve training our
chosen ASR model using the annotated data with two different toolkits based on DNN
and RNN architecture. This process might require substantial computational resources
and time. It is crucial to regularly validate and test the model with a separate dataset to
ensure its accuracy. Special attention will be paid to how the model performs under various
challenging conditions, like heavy accents, rapid speech, and noisy environments. In terms
of evaluation and based on the results of our tests and validations, the model may need to
be refined; this could involve adapting it with ATC data, tweaking the model parameters,
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or experimenting with different sets of features. Finally, the goal in the context of ATC
is to achieve the highest possible accuracy and reliability, particularly under challenging
conditions, due to the critical nature of ATC communications.

For call sign detection, we will implement fuzzy string matching, which is particularly
important in fields like automatic speech recognition using the Levenshtein algorithm. This
method centers on calculating the number of edits-insertions, deletions, or substitutions
needed to transform one string into another. This algorithm is readily available in many
programming languages; Python offers libraries like Fuzzy Wuzzy for this purpose [30].
We set a matching threshold based on our accuracy needs—a lower threshold means more
lenient matching, while a higher one requires a closer match. We applied the algorithm
to our dataset, compared each string to our target string ASR hypothesis, and calculated
the similarity score. The results were evaluated and adjusted to finetune the threshold
parameter of the algorithm as necessary.

5.1. Data Collection: The Ibn Battouta Speech Corpus

The Ibn Battouta Speech Corpus is a synchronized dataset of voice communication
between pilots and ATCOs with weather observation data originated from Tangier’s airport
and current activated aircraft flight information [31], which has a very rich pronunciation
accents of native and nonnative speakers thanks to its vital geographic position linking
different airspaces from Morocco (GMMM, GMTT), Spain (LEZL), and Gibraltar (LXGB).
The purpose is to detect and record audio speech with various accents and related captured
ADS-B data plus METAR report provided by the NWS Server [32], as described in Figure 3.
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Figure 3. Ibn Battouta dataset architecture.

The voice recording was obtained with Voice Activity Detection (VAD) [33] at a rate of
16 kHz from the VHF receiver [34] tuned to the airport frequency connected to the worksta-
tion’s audio input. At the same time, the ADS-B receiver provided by AirNav System [35]
logs flight data, as shown in Figure 4, including the call sign code of activated aircraft with
approximately 200 Nm circumference. In addition, a weather report is saved separately
after downloading updated data from the US National Weather Service (NWS) Server.
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5.2. Transcription and Logging

All utterances were transcribed and manually annotated by real pilots and ATCOs who
authored this paper [36]. It is a time-intensive task that requires ten man-hours to transcribe
one hour of speech. In order to estimate the distance and radial information, which are
frequently requested by ATCOs from pilots, we integrated a Python 3 code-based program
into the flight data from the ADS-B receiver using the Haversine formula [37] to calculate
and save the distance and bearing between the aircraft GPS position and D-VOR installed
on the Tangier airport runway. The call sign, date, and time are tagged in transcription files
to enhance context-free grammar. Table 5 summarizes the dataset characteristics.

Table 5. The Ibn Battouta dataset characteristics.

Speaker Gender
Total

Pilot ATCO Female Male

Number of
utterances 992 1500 544 1948 2492

Duration (sec) 5416 10,040 3720 11,736 15,456

Number of words 12,936 22,224 8084 27,076 35,160

Signal Average (dB) 106 95 90 102 101

Aircraft Call Sign 832 1180 440 1572 2012

The Ibn Battouta dataset is a rich and complex collection of communications in the
air traffic control context, encapsulating a wide array of spoken interactions between
pilots and air traffic control officers (ATCOs). It comprises a total of 2492 utterances,
divided between 992 from pilots and 1500 from ATCOs, indicating the more extensive
communicative role of ATCOs in managing airspace. Notably, the dataset reveals a gender
imbalance in communication, with female speakers contributing 544 utterances against
1948 from male speakers, highlighting the male predominance in this sector. The total
duration of these communications is 15,456 s (4 h 20 min), with pilots accounting for 5416 s
and ATCOs for a larger share of 10,040 s, reflecting the extensive and detailed nature of
ATCO communications. Regarding word usage, the dataset records 35,160 words, with a
significant portion (22,224 words) used by ATCOs, further emphasizing the complexity
of their verbal exchanges. The signal strength, measured in decibels, averages 101 dB
across the dataset, with a higher average for pilots (106 dB) compared to ATCOs (95 dB),
possibly due to different communication environments or equipment. The dataset also
includes a diverse array of 2012 aircraft call signs, with pilots using 832 and ATCOs 1180,
adding to the complexity of speech recognition challenges in this domain. Overall, the Ibn
Battouta dataset offers invaluable insights into linguistic characteristics and communicative
dynamics in air traffic control.
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5.3. Datasets of Training and Adapting Models

We collected the following available ATC datasets with different accents and en-
vironments (real operational and laboratory simulation) for model training phases, as
summarized in Table 6.

Table 6. Dataset splitting for model training.

Data Set Accent Environment Utterance Duration Call Sign
Annotation

Training
(103 h)

46,732 utterances

LDC94S14A [38] USA Operational 25,120 60 h No

ZCU_CZ [39] Czech Operational 6435 15 h No

ATCOSIM [40] FR/DE/CH Simulation 8078 8 h No

HIWARE [41] FR/GK/ES/IT Simulation 7099 25 h No

Validation (21 h)
10,024 utterance Mixed/Unseen Mixed Mixed 10,024 21 h No

Test (11 h)
5382 utterances

ATCO2 [42] CZ/DE/CH/AU Operational 2890 6 h 2817

IBSC MAR/ES/FR/EN Operational 2492 5 h 2012

This dataset is specifically tailored for research in automatic speech recognition within
the air traffic control sector, comprising a diverse range of accents, environments, and
operational scenarios. It is segmented into three primary sections: training, validation,
and testing, cumulatively spanning 135 h. The training set, with a substantial 103 h of
audio, incorporates a wide array of utterances from the USA, Czech Republic, and a
mix of countries like France, Germany, Switzerland, Greece, Spain, and Italy, covering
both operational and simulation environments. The validation set offers a 21 h mixed
compilation from unseen sources in varied environments. Lastly, the testing segment,
totaling 11 h, includes specific datasets like ATCO2 and IBSC, representing a range of
Morocco and Spain airspace in operational settings like En route and approach flight
situations. This section is unique as it includes call sign annotation.

5.4. Vocabulary and Accuracy

A limited or medium ATC vocabulary size, estimated at around 500 words, and the
standard phraseology of ATC grammar with its substantial semantic restrictions both allow
better accuracy by increasing the probabilities of valid words and their sequences despite
the noisy environment and high speech rate.

The word error rate (WER) is the standard metric for measuring the accuracy of any
ASR system [43,44]. It is calculated using the formula given in Equation (4):

WER =
I + D + S

N
(4)

where I is the number of insertions, D is the number of deletions, S is the number of
substitutions, and N is the number of words in the sentence.

The Real-Time Factor (RTF) is included to measure the speed of ASR. It can be com-
puted using the ratio expressed in Equation (5):

RTF = P/I (5)

where P is the necessary time to process an input of duration I.

5.5. Fuzzy String-Matching

For call sign detection, we applied a string-matching algorithm called the Fuzzy,
which determines the closeness of two strings. It is a technique used to identify two
elements of text strings that match partially but not precisely. This algorithm is based on the
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Levenshtein distance [45], a metric that evaluate the dissimilarity between two sequences
of words. This measure calculates the least number of modifications required to transform
one sequence of words into another.

Mathematically, the Levenshtein distance between two strings a, b is given by
leva,b(|a|, |b|) in Equation (6), where:

leva,b (i, j) =





max(i, j) i f min(i, j) = 0,

min





leva,b (i− 1, j) + 1
leva,b (i, j− 1) + 1

leva,b (i− 1, j− 1) + 1(ai 6=bj)

otherwise
(6)

where 1(ai 6=bj)
is the indicator function equal to 0 when ai = bj, and equal to 1 otherwise.

A threshold value will be determined during the experimentation to assess the simi-
larity ratio of the string matching between ADS-B Call Signs and Hypothesis transcription.

6. Experimentation
6.1. Overview

In our experiment employing the IBSC, we searched for the call sign in recognized
messages in all ADS-B line data stored and synchronized with voice utterances. The call
sign code in ADS-B data was parsed using an airline call sign designator database [46] from
the International Air Transport Association (IATA) and phonetic transcription. The highest
score of string matching allows the appropriate call sign to be identified.

We used the Pocketsphinx toolkit [47] with HMM-DNN topologies and the Deep
Speech recognition toolkit [48] based on a Recurrent Neural Network (RNN) for training,
adapting, and testing the IBSC dataset on an HP Z4 workstation equipped with an Nvidia
GeForce RTX 2070 GPU for training acceleration, and Ubuntu 18.04 as the OS.

Precisely, we implemented the Mozilla Deep speech version 0.9.3; the RNN is fully
connected and has bidirectional layers with 512 hidden units per layer. Initially, it contains
three layers with clipped rectified-linear (ReLU) activation, a Long Short-Term Memory
(LSTM) layer, followed by another layer with ReLU activation. Lastly, it is capped by a soft-
max classifier to predict the most likely alphabet letter at each point in an audio utterance.

6.2. Experimental Setup

First, we trained [49,50] two new acoustic models with five hidden layers using the
Pocketsphinx toolkit and the Deep speech toolkit with TensorFlow. We then adapted [51,52]
each toolkit′s default English model with all ATC datasets, as indicated in Table 6. For
audio data representation, we computed spectrograms of 80 linearly spaced log filter banks
and an energy term. The filter banks were computed over 20 ms windows with strides of
10 ms each. The language model was a 3 g model with a 907 unique words vocabulary
from all ATC datasets, which contained 55,338 utterances with a total duration of 128 h,
and from the AirNav Systems database history, from which the call sign was extracted and
decoded. To enhance and train this language model using the SRLIM toolkit [53], we added
all air waypoints from Morocco, Spain, and Gibraltar’s nearby airspaces and decoded
meteorological reports, in addition to all existing commercial and private company call sign
designator [54]. Finally, it took about 32 h to train each new acoustic model for 200 epochs.

For call sign detection, we used a pragmatic analysis based on ADS-B data, including
flight information, to detect the call sign in a recognized pilot message that represents
essential information for ATCOs to identify the aircraft; we implemented the fuzzy Wuzzy
Python function using the token_set_ratio () method [55]. It returned the highest similarity
ratio score for fuzzy string matching in all ADS-B data lines stored in the dataset for each
recognized utterance.
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6.3. Results and Discussion

After training, adapting, and following the assumptions given above, our ASR model
was tested on a different corpus from Morocco, Spain, and Gibraltar airspaces to cover
different accents, airspace information, and role speakers, as shown in Figure 5.

In an analysis of two prominent ASR models, PocketSphinx and Deep Speech, applied
to a dataset of air traffic control communications, distinct trends emerge in their perfor-
mance across various metrics. Both models were evaluated under three distinct training
conditions: pretrained English, trained on ATC only, and adapted pretrained English +
ATC on three key metrics:

• word error rate (WER) as defined in (4).
• fuzzy string-matching ratio given by the percentage of similarity between two strings.
• and call sign detection rate which gives the percentage of correct call signs detected

among total transcribed utterances.

The baseline results of model training and adapting ATC data sets are shown in
Table 7.

Table 7. Model training and adaptation.

Model Word Error
Rate

Fuzzy String-Matching
Ratio

Call Sign
Detection Rate

ATCO PILOT Both ATCO PILOT Both ATCO PILOT Both

Pocket
sphinx

HMM-DNN

Pretrained English 83% 91% 87% 17% 09% 13% 0% 0% 0%

Trained on ATC only 14% 20% 17% 68% 60% 64% 94% 84% 89%

Adapted Pretrained
English + ATC 11% 13% 12% 78% 68% 73% 95% 87% 91%

Deep Speech
RNN

Pretrained English 81% 89% 85% 27% 19% 23% 0% 0% 0%

Trained on ATC only 10% 12% 11% 80% 66% 73% 93% 89% 91%
Adapted Pretrained

English + ATC 08% 10% 09% 85% 77% 81% 96% 90% 93%

For PocketSphinx, the pretrained English model trained on approximately 6500 h of
data not related to the ATC condition showed in Table 7 high WERs (83% for ATCO, 91%
for the pilot, and 87% overall) and low fuzzy string-matching ratios (17% for ATCO, 9% for
the pilot, and 13% overall), along with a 0% call sign detection rate across all categories.
However, when trained exclusively on ATC data, there was a substantial improvement
in all metrics, with the call sign detection rate reaching as high as 94% for ATCO, 84% for
the pilot, and 89% overall. The adaptation of pretrained English with ATC data further
enhanced performance, reducing WERs to 11–13% and increasing the fuzzy string-matching
ratio to around 70–78%.

Deep speech mirrored these trends but with consistently better outcomes. Under
the pretrained English condition, it had slightly lower WERs and higher string-matching
ratios than PocketSphinx but still had no call sign detection. Training on ATC data alone
introduced significant enhancements, especially in call sign detection, reaching up to 93%.
The adaptation of pretrained models with ATC data yielded the best results, with WERs
dropping to as low as 8–10%, fuzzy string-matching ratios climbing to 81–85%, and call
sign detection rates peaking at 93–96%.

Overall, these results clearly demonstrate that both PocketSphinx and Deep Speech
significantly improve accuracy and reliability when trained on ATC-specific data, with
Deep Speech showing slightly superior performance in all tested scenarios.

The results show that, in general, for low-resource data, adapting the pretrained
default English model offers better performance [56] than training a new model, and using
the RNN Deep Speech toolkit achieved better results in noisy environments, especially
in-flight cockpit pilot transmission. Because the ATC dataset has a short duration, the
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model does not need to increase the depth parameter, as it may lead to overfitting. For
call sign detection, the similarity ratio of the fuzzy string matching was improved when
the WER was low. This means the better the message recognition accuracy, the better
the fuzzy string-matching score between the decoding call sign in ADS-B data and the
recognized message.
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Figure 5. Test flight information region.

Table 8 details an example of a voice message by a Royal Air Maroc company pilot
during the approach. The ASR hypothesis was confirmed with a WER of 12.5% by deleting
the unknown word “um”.

Table 8. ASR hypothesis example.

File Name 12120_20200319_170603_170606.trs

Tracking Date Time 19 March 2020 17:06:03

Real transcription Tangier AIR MAROC zero seven four roger um continue approach

ASR hypothesis Tangier AIR MAROC zero seven four roger continue approach

Word Error Rate WER 12.5%

By employing the data captured by the ADS-B receiver, we can assess the similarity
between each detected call sign shown in Table 9; compared to the result of the ASR
hypothesis from Table 8, the fuzzy string-matching score was calculated for each candidate.
The model returned the call sign leading to the highest score, i.e., 89%. It corresponds to the
RAM074 flight phonetic transcription (Tangier AIR MAROC zero seven four roger continue
approach). A threshold of 80% is fixed to avoid the situation when all call signs have the
same designator or do not concern the ASR hypothesis.

Table 9. Call sign candidates from ADS-B data.

Call Sign Phonetic Transcription Score Type Altitude Speed DME Radial

BEL271 Beeline two seven one 45% A333 35,000 470 506 225◦

RAM075 Royal Air Maroc zero seven five 79% B738 41,000 430 780 310◦

BAW669 Speed bird six six niner 34% A21N 36,000 460 380 198◦

RAM074 Royal Air Maroc zero seven four 89% B738 3325 210 20 98◦

RYR8073 Ryanair eight zero seven tree 51% B738 30,375 390 240 254◦
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6.4. Limitations

For private and general flights, the aircraft registration number is used as call sign
instead of flight number in ADS-B data. We can apply the same Fuzzy algorithm based to
search and match the phonetic transcription of aircraft registration number with the ASR
hypothesis, since it is mandatory to exist in every ADS-B information and pronounced in
every standard communication.

For light aircraft not equipped with ADS-B transmitters e.g., in VFR flight, we can only
rely on ASR performance to detect the registration number based on phonetic transcription.

7. Conclusions and Further Work

Although the application of ASR in ATC is more challenging due to the high-security
level required for air traffic management in the aviation domain, it remains possible to
benefit from standard communication, a small vocabulary, and contextual information to
implement simple and low-cost ASR solutions using ADS-B data to minimize the workload
of ATCOs in high-traffic situations located in an airport not equipped with radar.

In our experiment, after training and adapting the ATC dataset using the Deep Speech
toolkit and building the acoustic and language models based on a vocabulary dataset,
we were able to demonstrate the successful detection of multiple aircraft call signs in
recognized voice messages at a string-matching similarity rate starting from 60%. For safety
obligations, we recommend a threshold of 80% for the fuzzy string-matching rate.

Further work in the ATC domain can present us a chance to try Whisper, the new
advanced ASR system developed by OpenAI trained on 680,000 h of multilingual and mul-
titask supervised data collected from the web, known for its high accuracy in transcribing
speech, even in challenging conditions such as noisy environments or with speakers having
different accents. It supports multiple languages, making it versatile for global applications.
Whisper is designed to understand the conversation’s context, which helps provide more
accurate transcriptions.

An NLP module investigates the string position between the call sign and airport
entity name; in addition, grammar rules such as gerund and key verbs like “request” and
“report” in a recognized transmission would allow the detection of the speaker′s role during
standard ATCO and pilot communication.

Airport meteorological information and the runway are usually delivered to the pilot
before takeoff and landing. Decoding the METAR report, extracting the wind direction,
and calculating the runway in use will help confirm the acknowledgment between the pilot
and ATCO communication.
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Abstract: Automatic speech recognition and understanding (ASRU) for air traffic control (ATC) has
been investigated in different ATC environments and applications. The objective of this study was
to quantify the effect of ASRU support for air traffic controllers (ATCos) radar label maintenance in
terms of safety and human performance. Therefore, an implemented ASRU system was validated
within a human-in-the-loop environment by ATCos in different traffic-density scenarios. In the
baseline condition, ATCos performed radar label maintenance by entering verbally instructed ATC
commands with a mouse and keyboard. In the proposed solution, ATCos were supported by ASRU,
which achieved a command recognition rate of 92.5% with a command error rate of 2.4%. ASRU
support reduced the number of wrong or missing inputs from ATCos into the radar label by a factor
of two, which contemporaneously improved their situational awareness. Furthermore, ATCos where
able to perform more successful secondary tasks when using ASRU support, indicating a greater
capacity to handle unexpected events. The results from NASA TLX showed that the perceived
workload decreased with a statistical significance of 4.3% across all scenarios. In conclusion, this
study provides evidence that using ASRU for radar label maintenance can significantly reduce
workload and improve flight safety.

Keywords: automatic speech recognition; automatic speech understanding; air traffic management;
air traffic controller; radar label; human factors; assistant system; human-in-the-loop simulation

1. Introduction on Speech Recognition and Understanding

Speech recognition technology has made significant progress since its inception in
the 1950s, with advancements in machine learning and artificial intelligence leading to
increasingly sophisticated systems. Today, speech recognition technology has become
an integral part of everyday life, with applications ranging from virtual assistants such as
Siri and Alexa to transcription services for the hard of hearing and support functions for
air traffic controllers (ATCos). However, recognizing word sequences is not the final step
in creating good assistance functionality. It is crucial to understand the meaning behind
word sequences. By incorporating the extracted meaning of recognized word sequences
into assistance functionalities, one can measure the benefit for human operators using
these support systems. The higher the technology readiness level of these support systems,
which encompass the entire chain from word recognition to meaning comprehension and
assistant system integration, the more realistic experiments can be conducted to assess the
expected impact on human factors such as usability, workload, and errors.
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1.1. Study on Speech Recognition and Understanding in a Broad Air Traffic Control Context

In Section 1.1.1, the concept of automatic speech recognition and understanding
(ASRU) will be explained. Thereafter, the main research fields will be addressed and
ASRU will be placed within the context of the air traffic management (ATM) domain. This
section will conclude with a summary on the findings of human factors in the air traffic
control context.

1.1.1. What Is Automatic Speech Recognition and Understanding in Air Traffic Control?

The concept behind automatic speech recognition and understanding in air traffic
control will be outlined in the following example: An ATCo utters the following in radiotele-
phony communication with a flight crew: “air serbia seven echo lima descend four thousand
feet, QNH one zero one one” with a hesitation after the QNH. The definition of common
rules for transcribing such utterances may seem straightforward, but it is necessary to
facilitate data exchange and minimize potential information-lossy conversion methods. In
the above transcription, there might be a few cases where different notations regarding
word combinations, upper case letters, and verbal hesitations are reasonable, such as:

• “air serbia” versus “airserbia”
• “~q~n~h” versus “q n h“ versus. “QNH“ for spelled letters
• “[hes]” for hesitations and thinking louds versus. “_aeh_”, “hmm”, “umm”

The HAAWAII project introduced transcription rules to normalize ATC communica-
tions [1].

The interpretation of the example transcription meaning could then be extracted
as: “ASL7EL DESCEND 4000 ft, ASL7EL INFORMATION QNH 1011”. Furthermore,
discussions regarding the rules for annotating utterances can help to maximize the use of
automatic extraction algorithms, as can be understood from alternative suggestions on how
the above ATCo utterance can be annotated:

• ASL7EL descend 4000, qnh 1011
• ASL 7EL DESCEND 4000 feet, QNH 1011
• Asl7el desc 4000, Asl7el qnh 1011

The annotation rules, i.e., an ontology, for the above example in quotation marks, were
first defined and agreed upon by the major European ATM stakeholders [2].

While the above transcription and annotation rules may appear straightforward,
the challenge arises when dealing with greater variation in the utterances and especially
deviations of ATC communications from the International Civil Aviation Organization
(ICAO) phraseology [3]. Hence, the transcription of a potential pilot readback “serbia echo
lima going down four thousand on the QNH one zero double one” should result in the
same annotation as shown above for the ATCo utterance—with speaker “pilot” instead of
“ATCo” and reason “readback”—in order to perform simple readback error checks. The
complexity increases when numbers and terms are omitted or callsigns are abbreviated
without adhering to defined abbreviation rules. Thus, ASRU in ATC is understood as the
chain from receiving an audio signal via speech-to-text to extracting text-to-concepts in
a defined format. These formats do not consider the storage method for communications
inside software modules, i.e., using a structured data exchange format such as JavaScript
Object Notation (JSON), and incorporating the information from different interpretation
layers and recognition hypotheses.

1.1.2. What Are the Main Research Fields for Application of ASRU in ATM Domain?

The main research fields for applying ASRU in the ATM domain have varied over
the last decades. Early applications focused on support in ATC training and reducing
the workload of pseudo-pilots in simulations [4]. Subsequently, there was a shift towards
offline analyses that assessed workload [5]. In this research, command types were extracted
and counted over specific time periods [6].
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In recent years, research has concentrated on quantifying the impacts of ASRU sup-
port on human performance and safety. Additionally, studies have analyzed the effects
of support systems for radar label and flight strip maintenance on ATCo workload [7],
resulting in changes in flight efficiency [8]. ATCos have historically used paper flight
strips to manage their aircraft and corresponding clearances. These flight strips usually
contained static information about the aircraft such as callsign, wake vortex categories,
and designated route, as well as the aircraft’s dynamic clearances such as altitude, speed,
and course. Currently, electronic flight strips or interactive on-screen aircraft labels are
used. However, these systems still require manual input from ATCos to update clear-
ances. Although ATCos are used to communicate and input clearances simultaneously, the
manual input requires additional workload from ATCos. Conversely, ASRU systems can
be employed for automatic radar label input to remedy this effect. ATCos only need to
verify the automatic input and make corrections in rare cases. This can offset the workload
increase while allowing mental capacity to be directed to other tasks.

In addition, the advancement of automatic readback error detection in ATC
communication—one of the most complex tasks of ASRU in ATC—is progressing. However,
despite efforts to group communication threads and compare command content based on
real-life operational data, the progress remains limited [9]. Throughout these developments,
the need for metrics to measure the ASRU performance arose. Different metrics, such as
recognition rates and error rates for complete commands and callsigns, have emerged,
which are related to precision and recall [10].

In general, the benefit of more recent applications is the greater amount of usable data
and the utilization of machine learning techniques [11]. However, ASRU is still not yet in
operational use in ATC.

1.1.3. Human Factors in an Air Traffic Control Context

The effect of ASRU support, with command error rates below 2%, on ATCo workload
has already been validated in the project AcListant®–Strips (Active Listening Assistant)
project [12]. To validate the effects of ASRU support on ATCo workload, it is important
to understand the different dimensions of workload. In this context, the mental workload
of ATCos is connected to the task performed and related requirements, as detailed in [13].
The time for maintaining radar labels with similar user interfaces with and without ASRU
support was measured using the Dusseldorf approach on a single runway as early as
2015 [8]. The time for clicking and maintaining the radar labels was reduced by a factor of
three for the eight German and Austrian ATCos when they were supported by ASRU. This
resulted in a better use of their mental capacity, leading to more efficient aircraft trajectories
and a reduction of 60 L of fuel consumption per aircraft [8]. Furthermore, the project
“Digital Tower Technologies—HMI Interaction modes for Airport Tower” investigated
the impact of ASRU support for electronic flight strip maintenance. The ten Lithuanian
and Austrian ATCos experienced a reduction of workload based on a secondary task
measurement when ASRU [7] achieved command recognition rates of 90% and callsign
recognition rates of 94%.

1.2. Research Question

Based on above-mentioned conditions, the main research question of this paper can
be summarized as follows: “how can we quantify the effect of ASRU support for ATCos in
radar label maintenance in terms of safety and ATCos’ workload?”

To answer this main question, the following research questions are discussed in
this paper:

• How accurately does ASRU extract commands that influence radar label entries?
• How many incorrect or missing radar label entries exist with and without ASRU support?

In addition to the previous derived questions, we also considered whether the ATCos
corrected missing or wrong ASRU outputs.
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Both questions were addressed using objective measurements, such as command
recognition error rates.

• What are the consequences of over-trust or under-trust in the ASRU system?

This question is addressed through subjective data based on post-run and post-
validation questionnaires, as well as objective data recorded during the simulation runs.

• How can we compensate for sequence effects induced by multiple runs under similar
conditions?

The presented statistical approach allows us to obtain results with higher statistical
significance without increasing the number of participants involved.

1.3. Structure of the Paper

In Section 2, the human-in-the-loop validation trials for radar label maintenance are
described, including the study parameters, simulation framework, and the methods and
techniques used. Additionally, the ASRU architecture is explained. Section 3 begins by
presenting the subjective and objective measurements for workload, safety, and situational
awareness. It then discusses the applied method to compensate for sequence effects within
the objective results, considering both the ATCos’ performance and ASRU performance.
This is followed by the presentation of the results and discussion in Section 4. Finally,
Section 5 draws a conclusion based on the results.

2. Validation Trials and Methods

The aim of the validation trials was to provide a final assessment of the ASRU by
quantifying its benefits on the ATCos’ performance, perceived workload, and flight safety.
The difference between the baseline runs and the solution runs was the absence or presence
of ASRU support for radar label maintenance in approach control. The ATC approach
position was chosen as it is a highly dynamic area and is usually crowded with aircrafts at
hub airports such as Vienna. The aircrafts that the ATCos needed to handle in the approach
sector had already been handed over from en-route sectors and required guidance towards
their final destination for a transfer of control to the tower. Therefore, it was expected
that using ASRU for radar label maintenance would have an impact. In the following the
general setup for the validation trials, the simulation scenarios, and the collection of results
are discussed.

2.1. Infrastructure and Exercises

The ASRU validation trials were performed using the Air Traffic Management and
Operation Simulator (ATMOS) at DLR’s Air Traffic Validation Center. The ATMOS pro-
vided a human-in-the-loop simulation environment [14,15], which EUROCONTROL rec-
ognizes as a suitable validation method [16] for systems in the pre-industrial development
phase [17]. Furthermore, the ATMOS has been previously used in several validation cam-
paigns including mental workload analysis for air traffic controllers [18], analysis of air
traffic management security [19], and assessing the impact of spaceflights on air traffic
management [20]. The NARSIM software (version 8.3) [21] was deployed as a generic real-
time software. Aircraft performance was modeled using the Base of Aircraft Data (BADA)
model, version 3.15, from EUROCONTROL [22]. Two controller working positions (CWP)
and six simulation-pilot working positions (SWP) were configured. During a simulation
run, only one CWP and a maximum five SWP were used, depending on the traffic load. The
second CWP and SWPs served as backups to provide redundancy in case of system failure.
Furthermore, during an active simulation run, the unused CWP was already prepared for
the next simulation run, which saved time and reduced procedural errors.

The ATCos’ verbal utterances served as the voice input signal for the ASRU system,
specifically the speech recognition engine, which was the first part of the chain. The
communication between the ATCo and simulation-pilot was carried out according to the
defined phraseology by ICAO [23]. Figure 1 shows the CWP setup, which included the
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main radar screen, a voice-over-IP (VoIP) headset, an ASRU log, and a secondary screen.
These components will be explained in detail later on.
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Figure 1. CWP setup including headset for radio telephony, radar screen, ASRU log, and secondary
screen.

Simulation-pilots were responsible for steer their aircrafts and implementing aircraft
clearances received from Approach ATCos. A DLR-developed human–machine interface
(HMI) was used for the SWP. The HMI included a radar screen and a flight strip section.
The flight strip section displayed aircraft performance data (such as velocity, flight level,
and route) and contained a command line to enter clearances. CWP and SWPs, located in
different rooms, were connected via VoIP.

The validation trials were structured in three iterative campaigns. The first two campaigns
for preparing the main trials took place in autumn 2021 and spring 2022. The main cam-
paign was carried out from 14 September until 3 November 2022. In total, twelve ATCos
from the Austrian air navigation service provider (ANSP) Austro Control participated
in the main campaign, consisting of eleven male ATCos and one female ATCo. The age
of participants ranged from 25 to 44 years, with a mean age of 32 years and a standard
deviation (SD) of SD = 7.3. Their work experience ranged from one to 20 years, with a mean
work experience of eight years (SD = 6.8). During the preparation campaigns (autumn
2021, spring 2022) the ATCos wore face masks in accordance with COVID-19 pandemic
rules. During the main campaign, no face masks were required for ATCos. Wearing face
masks had no significant effect on ASRU performance.

2.2. Simulation Components

The simulation was implemented for the Vienna airport (LOWW) terminal maneu-
vering area (TMA), as shown in the approach chart of Vienna in Figure 2. Figure 3 shows
the main radar screen for ATCos with LOWW airspace. The ATCos’ area of responsibility
encompassed a combined pickup/feeder sector in Europe (feeder/final in the U.S.). LOWW
consists of two dependent runways. During the simulation, runway 34 (RWY34) with
a length of 3600 m was utilized. The ATCo was in charge of guiding the arrival streams
to RWY34. No departures, overflights, or other types of traffic, such as visual flight rule
traffic, were integrated into the simulation runs. There were no limitations regarding the
aircraft type or simulated weather restrictions. Furthermore, no emergency situations or
non-nominal situations such as bird strikes or runway closures were analyzed.
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Figure 3. Main radar screen with LOWW airspace: waypoints (grey), start of transitions (NERDU,
MABOD, BALAD, PESAT), as well as aircraft symbols and labels (green). This is a screen shot, how
the screen is shown to the ATCo with the exception that we added the four metering fixes NERDU,
MABOD, BALAD and PESAT. Overlapping of information often happens and the ATCo knows how
to deal with these challenges.
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A within-subject design [25,26] with the two factors “traffic flow” and “use of ASRU”
was used to examine the dependent variables including mental workload, safety, situational
awareness, time for maintaining radar label cells, and number of remaining incorrect inputs.
Although the present experiment was conducted with a limited number of participants in
the specific airspace of Vienna using a prototypic non-operation user interface, the results
yielded statistical significance and were consistent with the findings from the AcListant®–
Strips project conducted using the Dusseldorf approach [8,12].

Two different simulation scenarios were developed: a medium-density traffic scenario
(M) with 30 arrivals per hour and a high-density traffic scenario (H) with 42 arrivals
per hour. Additionally, a training traffic scenario (T) with 20 arrivals per hour was used
as introductory exercise. These scenarios were developed based on recorded operational
data from LOWW. For that reason, traffic flow corresponded to typical numbers and
types at LOWW. All simulation scenarios (M, H) lasted for 35 min. At the beginning of
the simulation scenarios, the aircrafts were already located inside the TMA under the
responsibility of the ATCo. The other aircrafts were initiated outside the TMA and followed
standard arrival routes (STAR)s towards the area navigation (RNAV) routes, as depicted
in Figures 2 and 3. Before entering the TMA, simulation-pilots set the standard initial call
according to the currently applied radio telephony procedures.

Each validation day consisted of five simulation sections per ATCo. These sections
were distinguished by the following design factors: traffic flow (T, M, H) and use of ASRU.
Simulation sections without ASRU support for the ATCos were referred as baseline runs.
These runs represented the typical manual mouse-only input approach for radar label
maintenance in the ATCo HMI. Simulation sections with ASRU support were labelled as
solution runs. During the solution runs, ATCos were able to use the ASRU inputs and
manual mouse input for potential corrections. Regarding the traffic flow, each ATCo started
with a training run to familiarize themselves with the setup and input modalities. The
support of ASRU was activated and deactivated during the training run. Afterwards, the
ATCos started with an M run followed by an H run. Then, another M run was followed by
the final H run. As for second decisive variable, seven ATCos started with a solution run.
Among them, five of the ATCos had no ASRU support during the first simulation run. The
indention was for a 50% distribution between starting with and without ASRU support.
However, due to problems with the surveillance data, one runs was cancelled and needed
to be repeated at the end. If an ATCo began with a solution run, she/he also ended with
a solution run, with two baseline runs in between. The same procedure was applied in
reverse if starting and ending with a baseline run.

Two ATCos were available on each of the six validation days. They started at 08:30 a.m.
and finished the validation day at approximately 04:30 p.m. Following the previously
described procedure, while one ATCo executed a simulation run, the other ATCo filled
in questionnaires and rested. As a result, the ATCos did not work in parallel. All the
questionnaires used in the study are described in Section 3.1. By alternating the order of
simulation runs for approximately half of the ATCos, it was expected that any sequence
effects or effects of exhaustion would be averaged out. While this approach helped to some
degree, it still had undesired negative effects on the statistical significance of the results. In
Section 3.3 a technique to compensate for these sequence effects will be presented.

2.3. HMI for Radar Label Maintenance

The ATCos were provided with three different screens, as shown in Figure 1. Figure 4a–d
shows the aircraft labels in detail. Figure 4a displays the reduced data block with the
following structure: the first row contained the callsign, the second row included flight
level, cleared flight level, ground speed, and cleared ground speed, while the third row
showed heading, waypoint, and RNAV route. In Figure 4b, the aircraft label is shown as
a full data block in which the fourth label line was visibly activated through a mouse-over
hovering function. The fourth label line additionally provided the present heading, remarks,
and rate of climb/descent. The nine cells framed in white (highlighted for visualization
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purposes in the paper) could be interactively selected via a mouse click. Figure 4c shows
the full data block with recognized clearances from ASRU displayed in purple. It also offers
two checkmarks in the first label line. If an interactive cell was clicked, a correspondent
drop-down menu appeared for value selection (see Figure 4d).
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If ATCos were provided with ASRU support in solution runs, the content of their
verbal utterances was automatically extracted and transformed into relevant ASRU output
values. These recognized values appeared in purple, as shown in the label cells of Figure 4c.
Additionally, a yellow Reject and green Accept checkmark appeared in the top line of the
label. Thus, ATCos could confirm all of the proposed values or reject them by clicking on
the buttons. The accepted values turned the light green, matching the color of the rest of
the aircraft clearances. In rare cases of misrecognitions, the ATCos needed to correct values
manually via drop-down menus. If the ATCo did not interact with the label, the recognized
values were automatically accepted after ten seconds. This time parameter was determined
based on [8,27].

2.4. Additional Components

Figure 5 shows the SpeechLog provided at the CWP, as shown on the left side of
Figure 1. The SpeechLog was not essential for the ATCos to operate the setup. Instead, it
served as a showcase and was not considered part of the experimental setup. Nevertheless,
the SpeechLog displayed an overview of the recognized ATCo utterances (word level tran-
scriptions) and meanings (annotations with ATC concepts following the defined ontology).
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Finally, Figure 6 shows the SWP HMI of the simulation pilots. It provided flight strips
for all aircraft within the airspace, displayed as purple strips, indicating upcoming aircrafts
(left side) or those already in progress (middle). It also included a radar screen for an
overview of the traffic situation (right side). Additionally, the simulation-pilots saw the
ASRU word level output for comparison with or support of the self-recognized utterances.
The ASRU word level output was provided in the lower left part.
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2.5. Automatic Speech Recognition and Understanding

The validation software implemented the ASRU system as defined by the HAAWAII
project (Highly Automated Air traffic controller Workstations with Artificial Intelligence
Integration) [28]. The ASRU core mainly relied on four modules, as shown in Figure 7. The
modules have already been described in detail in [29]. Here, we provide a brief summary
of their functionality. In addition to the information provided in [29], we quantified the
effect of the main modules to the final performance in Section 4.1 of the results.
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Voice Activity Detection (VAD): The VAD process is relatively straightforward, as
the push-to-talk (PTT) signal is readily available. It did not have a significant impact on the
performance.

Speech-to-text (S2T): Whenever the VAD detects a transmission, the signal is for-
warded to S2T, and the recognition process starts in real time. S2T delivers with a minimum
latency when an ATCo starts speaking and updates the recognized words continuously
until the end of the transmission when the PTT button is released.

Concept Recognition: Each time a recognized word sequence is forwarded, it is
analyzed by the Concept Recognition module. The analysis result is then transformed into
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relevant ATC concepts as defined by SESAR project PJ.16-04 CWP HMI [2] and extended
by the HAAWAII project [30], as shown in Figure 8.
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A command at the semantic level consists of a type, values, unit, qualifier, etc., as
shown in Figure 8. All these parts must be correctly extracted at the semantic level to be
counted as a correct recognition. Otherwise, it is counted as an error or a rejection.

Callsign Prediction: This module considers surveillance data to determine if any
recognized callsign could reasonably be part of an ATCo utterance. The output is used by
S2T and Concept Recognition to enhance the recognition quality for both modules. Further
details on callsign prediction and callsign extraction can be found in [31]. This model
is highly critical, as indicated by the results in Section 4.1.3. It considers the callsigns of
aircrafts that are currently in the relevant airspace.

3. Methods and Techniques
3.1. Subjective ATCo Feedback Techniques

This section describes the methods and experiments used to obtain subjective feedback
from the participating ATCos during the validation trials. The subjective rating measures
encompassed various aspects of mental workload, situation awareness, usability, and accep-
tance. An instantaneous self-assessment of workload (ISA) measurement was integrated
into the radar screen of the CWP and had to be answered during the simulation runs. The
answers on several questionnaires were captured after each simulation run. The set of
questionnaires included the NASA-TLX (National Aeronautics and Space Administration
Task Load Index) [32], Bedford Workload Scale [33], SUS (System Usability Scale) [34],
CARS (Controller Acceptance Rating Scale) [35], and the three SHAPE questionnaires
(Solutions for Human Automation Partnerships in European ATM) [36]—SASHA (Situ-
ation Awareness for SHAPE) ATCo, SATI (SHAPE Automation Trust Index), and AIM
(Assessing the Impact on Mental Workload). All methods and experiments are explained
in the following sections.

3.1.1. NASA Task Load Index (NASA TLX)

The NASA TLX was used to assess different dimensions of the workload [32]. The
questionnaire includes subscales of mental demand, physical demand, temporal demand,
performance, effort, and frustration. In total, the questionnaire consisted of six questions
with ten answer possibilities from (1) Low to (10) High. The adapted questions can be
found in Appendix A.1.

The unweighted NASA TLX was used instead of the weighted version, as previous
ATC projects showed no further benefit from weighting parameters and it often caused
confusion of the ATCos.

The ISA measures were used to obtain the ATCos’ perceived mental workload within
a defined time period [37]. Each ATCo was prompted to rate their perceived mental
workload during the simulation run every five minutes for the last five minutes [38,39].
Therefore, after five minutes of simulation time, the ATCos heard a sound signal on their
headset as a five-point Likert scale [40] appeared on the lower part of the radar screen. They
were able to rate their perceived mental workload on a scale of one [underutilized] to five
[excessively busy]. The ISA data were used afterwards to examine the mental workload. It
is worth noting that in previous projects and the current study, ATCos usually did not rate
their workload as a five, even during extremely busy traffic hours. Thus, there is a need for
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a more objective measure. Therefore, a secondary task was implemented, as described in
Section 3.2.

3.1.2. Bedford Workload Scale

The Bedford Workload Scale consists of two questions that inquire about the average
workload and the peak workload, with ten possible answers ranging from (1) “Workload
insignificant” to (10) “Task Unsustainable due to Workload”, as shown in Figure 9. Additionally,
the applied Bedford Workload Scale questionnaire had the following final open-ended
question: “Which factors/events/conditions have contributed to potentially high workload?”.
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3.1.3. System Usability Scale (SUS)

The System Usability Scale, initially proposed by John Brooke [34], was used to assess
the general usability with and without the ASRU support. This questionnaire consists of
ten statements to be rated on a five-point scale, ranging from (1) “fully disagree” to (5) “fully
agree”. The adapted questions can be found in Appendix A.2.

3.1.4. Controller Acceptance Rating Scale (CARS)

The CARS questionnaire, developed by NASA Ames [35], measures the operational
acceptability and serves as an indicator for the satisfaction of human-system performance.
CARS consist of a single question: “Please read the descriptors and score your overall level of
user acceptance experienced during the run. Please check the appropriate number between 1 and
10”. The different answer options were color-coded with red, orange, and green, as shown
in Table 1.

3.1.5. Solutions for Human Automation Partnerships in European ATM (SHAPE)

The SHAPE questionnaire was developed to evaluate the effects of automation on
different human factors for ATCos, such as workload, situation awareness, and trust in
the system [36]. It consists of three parts, as described in the following sections. Each
question had seven answer possibilities, ranging from “never” to “always” or from “none”
to “extreme”. The questions can be found in Appendices A.3–A.5.

For quantitative analysis, the answers were mapped to numerical values between
one and seven. A numerical value of one corresponded to a good system, whereas seven
corresponded to a bad system.
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Table 1. Colored-coded answer options of the CARS questionnaire.

1. Improvement mandatory. Safe operation could not be maintained.

2. Major Deficiencies. Safety not compromised, but system is barely controllable and only with
extreme controller compensation.

3. Major Deficiencies. Safety not compromised but system is marginally controllable.
Considerable compensation is needed by the controller.

4. Major Deficiencies. System is controllable. Some compensation is needed to maintain
safe operations

5. Very Objectionable Deficiencies. Maintaining adequate performance requires extensive
controller compensation

6. Moderately Objectionable Deficiencies. Considerable controller compensation to achieve
adequate performance.

7. Minor but Annoying Deficiencies. Desired performance requires moderate controller
compensation

8. Mildly unpleasant Deficiencies. System is acceptable and minimal compensation is needed to
meet desired performance.

9. Negligible Deficiencies. System is acceptable and compensation is not a factor to achieve
desired performance.

10. Deficiencies are rare. System is acceptable and controller doesn’t have to compensate to
achieve desired performance.

Color code: Pink: Not acceptable, Yellow: Changes necessary, Green: Acceptable.

3.1.6. Situation Awareness for SHAPE (SASHA)

The SASHA questionnaire is part of the SHAPE questionnaire and addresses different
dimensions of situation awareness [36]. This questionnaire consisted of six statements with
the seven answer possibilities: “never”, “seldom”, “sometimes”, “often”, “more often”, “very
often”, and “always”. The questions are provided in Appendix A.3.

3.1.7. SHAPE Automation Trust Index (SATI)

The SATI questionnaire is also part of the SHAPE questionnaire. SATI provides
questions to measure the human trust in ATC systems [36]. This questionnaire consisted of
six statements with the seven answer possibilities: “never”, “seldom”, “sometimes”, “often”,
“more often”, “very often”, and “always”. The questions are provided in Appendix A.4.

3.1.8. Assessing the Impact on Mental Workload (AIM)

The AIM questionnaire, developed by Doris M. Dehn [36], assesses the impact of
changes in the ATM system on the mental workload of ATCos. This questionnaire consisted
of 15 questions with seven answer possibilities: “none”, “very little”, “little”, “some”, “much”,
“very much”, and “extreme”. The questions are provided in Appendix A.5.

3.2. Objective Secondary Task for Workload Assessment: “Stroop Test”

As previously addressed, a more objective task to gather the mental workload of
ATCos was needed. Therefore, a secondary task [41] based on the Stroop Test was integrated
into the touch device located on the right side at the CWP [42] (see secondary screen in
Figure 1). The central idea is that ATCos have the mental capacity to fulfil a secondary task
in addition to their primary ATC task if they are underutilized. Evaluating the results of
the secondary task indicates the amount of mental workload an ATCo experienced during
the different simulation runs.

Figure 10 displays the interface of the secondary task. The secondary task started
ten minutes after the simulation onset and provided a ten-minute execution window. The
ATCos were able to begin the tasks within this time period whenever they felt comfortable
with respect to handling the primary task, as shown in Figure 10a. After pressing the
START button, the name of a color was displayed in a different color than the name itself
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in the upper display part, as shown in Figure 10b. In a next step, the ATCos had to select
the color that was used for printing from the available options. In the example shown
in Figure 10b, the correct solution was GREEN because the word “RED” was printed in
green. After submitting their choice, the ATCo could proceed to the next task by clicking
the START button. A higher number of correct responses indicated greater mental spare
capacity and less mental workload occupied by the primary task [43].
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3.3. Compensation of Sequence Effects

As an example, Table 2 shows the answers to the question “How hard did you have to work
to accomplish your level of performance?” from the NASA TLX questionnaire completed by
the 12 ATCos. The answers ranged from one (low effort) to ten (high effort) for the medium
traffic scenario. Columns “ATCo Id” show the identifier of the participant. Columns
“Sol” and “Base” show the chosen answer value. The number “1/2” indicates whether
the participant started with a baseline or solution run (“1”) and ended with a baseline or
solution run (“2”).

Table 2. ATCos’ answers to the NASA TLX questions to determine the effort needed to accomplish
the task.

ATCo Id Sol 1 Base 2 Diff ATCo Id Base 1 Sol 2 Diff

1 7 5 2 3 8 4 −4

2 7 8 −1 5 7 4 −3

4 5 5 0 7 3 2 −1

6 3 1 2 9 7 3 −4

8 4 1 3 11 6 2 −4

10 6 3 3

12 3 3 0

Average 5.0 3.7 1.3 Average 6.2 3.0 −3.2

Average Run 1 5.50 Average Run 2 3.42

Light yellow color shows the first run of an ATCo, light green shows his/her second run.

Due to sequence effects, the results in the second run generally showed improvements
compared to the first run for the ATCos. This would have averaged out, if 50% of the
participants would have started with the baseline and 50% would have started with the
solution run, but with a high standard deviation. Therefore, we decided to filter out the
sequence effects not only on average, but for each participant. Furthermore, a run with
ATCo ID 2 failed and was repeated, resulting in seven ATCos starting the medium scenario
with solution runs and only five with baseline runs. Therefore, sequence effects do not even
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compensate on average. The following approach adapted from [8], was used to compensate
for these sequence effects:

The average values of all 12 ATCos for the first run and the second run were calculated,
as shown in the last and second-to-last rows of Table 2. The averages of the last row were
used to correct the feedback values for the question. The average value of all ATCos’
answers was 5.50 for the first run in the medium traffic scenario (the averages of all values
in column “Sol 1” and column “Base 1” are marked in light yellow). In the second run
with medium traffic, the ATCos answered with an average value of 3.42 (the averages
of columns “Base 2” and “Sol 2” are marked in light green), and the ATCos performed
2.08 units better on the scale with a maximum value of 10 units. Therefore, we corrected all
entries of Table 2 by 1.04 units. As shown in Table 3, the first runs, marked in light yellow,
were corrected by subtracting 1.04, and second runs, marked in light green, were corrected
by adding 1.04.

Table 3. ATCos’ answers to NASA TLX questions to evaluate the effort needed to accomplish the
task after compensating for sequence effects.

ATCo Id Sol 1 Base 2 Diff ATCo Id Base 1 Sol 2 Diff

1 6 6 −0.1 3 7 5 −0.9

2 6 9 −3.1 5 6 5 −0.9

4 4 6 −2.1 7 2 3 1.1

6 2 2 −0.1 9 6 4 −1.9

8 3 2 0.9 11 5 3 −1.9

10 5 4 0.9

12 2 4 −2.1

Average 4.0 4.8 −0.8 Average 5.2 4.0 −1.1

Average Run 1 4.46 Average Run 2 4.46

Light yellow color shows the first run of an ATCo, which are decremented by 1.04 compared to Table 2, light
green shows his/her second run, which are incremented by 1.04. The values are rounded.

The described sequence effect compensation technique (SECT) could result in values
below one or even negative values, which could not be provided by the ATCos. How-
ever, this is not important for the performed t-tests, as described in the following section.
Only the differences between runs with and without ASRU support for the same ATCo
are important.

The difference between runs with ASRU support and those without ASRU sup-
port was minus 0.58 (calculated as 7 × 1.3 – 5 × 3.2)/12) in Table 2. After compen-
sating for sequence effects as shown in Table 3, the average difference becomes minus
0.93 ((−7 × 0.8 − 5 × 1.1)/12)). If we had an equal number of runs starting with ASRU
support and without ASRU support, the average value would not change. This will be
the case for all heavy traffic scenarios. As demonstrated in the results section, even for
medium traffic, the differences changed only slightly with and without compensating for
sequence effects. More importantly, the standard deviation of the differences decreased in
most cases when SECT was applied. It decreased from 2.6 in Table 2 to 1.37 in Table 3. After
applying SECT, the average results of all first runs always matched the average values of
all second runs.

To conclude, the experiments involved two independent variables: (i) with or without
ASRU support and (ii) whether the ATCos received ASRU support in first runs or in the
second runs. The presented technique can compensate for sequence effects, enabling clearer
observation of the results of the ASRU support. In the presented example, the sequence
effect influenced the result by 2.08 units out of 10, whereas ASRU support had only an effect
of 0.58 units. By using the described technique, both effects can be separated, resulting in
an ASRU effect of 0.93.
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3.4. Paired T-Test to Evaluate Statiscal Significance

The differences between runs of the same ATCo in baseline and solution runs smaller
now, indicating a decrease in the standard deviation sigma. This observation was also
supported by the performed paired t-test, which was previously applied during the
AcListant®–Strips project mentioned earlier to assess workload reduction benefits [12]
and improvements in flight efficiency [8].

The null hypothesis H0 states, “ASRU support does not decrease the amount of work, how
hard the ATCo needs to work to accomplish the required level of performance”. The test value is
defined as follows:

T = (M− µ0)

√
n

SD
, (1)

The differences in how the ATCo needs to work (solution minus baseline runs) for
each run in Table 3 were calculated, for example, for ATCo ID 3 as seven minus five. The
number of differences (ATCos) is denoted as n (12 in the present case). M represents the
mean value of the questionnaire answer differences “Diff” in Table 3, which in the present
case is minus 0.93. SD refers to the standard deviation of the differences, which was 1.37
based on the values in Table 3. It is only important if the ASRU input results in lower value
answers to the questions. Therefore, µ0 was set to 0. With these values, we calculated T as
minus 2.35.

The value T follows a t-distribution with n− 1 degrees of freedom. The null hypothesis
H0 can be rejected with probability of α (also known as p-value) if the calculated value for T
is less than the value of the inverse t-distribution at position tn−1,1−α with n − 1 degrees of
freedom (in our case, −1.80 for α = 0.05). Therefore, the hypothesis H0 is rejected because
T = −2.35 < −1.80. Even the minimal α can be calculated, such that T < tn−1, 1−α still holds.
In this case, α = 3.8%. If we repeated our experiments with the 12 ATCos 1000 times, we
could expect that the H0 would not be rejected only in 38 cases. The results invalidate the
negatively formulated null hypothesis, indicating that ASRU support does decrease the amount
of work required for the ATCO to accomplish the required level of performance with a probability of
α = 3.8%.

The probabilities of rejecting the null hypotheses for the heavy traffic scenario and for
both scenarios combined were also calculated. These calculations are presented later in
Table 10 in the following results section.

The effects of SECT in distinguishing between the effects of ASRU support and se-
quence effects are evident. Without SECT, the α value was 45.3%, compared to 3.8% after
applying SECT. Without SECT, there was the need for strongly different ratings from ATCos
to achieve statistical significance, even if the results were significant with only slightly
different ratings. Further details are provided in [29].

4. Results and Discussion

In this section, the performance of ASRU is first presented. Secondly, the subjective
feedback from questionnaires is explained and discussed. Finally, the section concludes
with the objective results from performance measurements.

4.1. Results of Speech Recognition and Understanding Performance
4.1.1. Performance at the Word Level

Table 4 shows the performance on a word level, which is based on the word error
rate (WER), which represents the percentage of words that were not correctly recognized.
The WER is calculated using the Levenshtein distance [44]. The table also includes the
number of uttered words, as well as the number of substitutions (Subst), deletions (Del),
and insertions (Ins), which indicate the differences between the recognized words and the
actual uttered words. The best performance, i.e., lowest WER, for a single ATCo on all
his/her four runs was 0.7%, while the worst performance was 8.2%.
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Table 4. Performance at the word level quantified as the word error rate (WER).

# Words Levenshtein
Distance # Subst # Del # Ins WER

Total 118,816 3712 1853 1324 535 3.12%

Heavy 64,441 2148 1066 729 353 3.33%

Medium 54,375 1564 787 595 182 2.88%

Solution 59,180 1805 881 686 238 3.05%

Baseline 59,636 1907 972 638 297 3.20%
# means “Number of”.

It should be highlighted that there was a difference between the solution and baseline
runs, with the ATCos speaking more clearly when supported by ASRU. In the baseline
runs, the ATCos did not benefit from ASRU. Nevertheless, we recorded and evaluated
their performance. It was also interesting to observe that the performance decreased as the
number of aircrafts increased, although it did not result in a break-down of performance.

Table 5 shows the “top words” that were most often misrecognized, sorted by the
number of absolute occurrences. The word “two” was recognized 32 times as a different
word. It was recognized as another word (“substituted to”) 261 times and inserted 91 times,
i.e., it was recognized, but no word was actually spoken. A total of 71 times, it was said,
but no word was recognized at all. The sum of these four errors was 455. The word
“two” was actually spoken 8841 times, and the number of recognitions, correct and wrong,
was 9090 times. The word “two” was involved in incorrect word recognition in 5% of the
instances compared to the times it was actually spoken. The word “to” was very often
involved in these problems, more than one-third of the instances. The table also shows that
many important ATC-related words were often involved in recognition problems.

Table 5. Top 10 words with challenges on word level ordered by total recognitions.

Word Subst by Subst to Ins Del Sum Said Recogn %

two 32 261 91 71 455 8841 9090 5%

one 32 130 33 44 239 8128 8215 3%

zero 20 101 8 24 153 7576 7641 2%

four 209 104 9 54 376 5804 5654 6%

three 10 73 9 25 117 5624 5671 2%

eight 99 78 37 200 414 5422 5238 8%

austrian 134 3 5 25 167 4979 4828 3%

five 77 74 10 9 170 3745 3743 5%

ILS 70 0 0 41 111 1988 1877 6%

air 24 5 23 48 100 1309 1265 8%

4.1.2. Performance at the Semantic Level

Table 6 summarizes the performance of the Concept Recognition module on the
semantic level. The table distinguishes between the medium and heavy traffic scenarios,
as well as between the baseline and solution runs. We did not compensate for sequence
effects in this analysis, as statistical significance is not provided.

The columns “Cmd-Recog-Rate” and “Cmd-Error-Rate” show the percentage of correctly
and incorrectly recognized commands, respectively. The difference between the sum of
these two columns and 100% corresponds to the percentage of rejected commands. The
last two columns show the same metrics for the callsign only. Details regarding the metrics
used can be found in [10].
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Table 6. Performance at the semantic level for different traffic complexities and for baseline and
solution runs.

Cmd-Recog-Rate Cmd-Error-Rate Csgn-Recog-Rate Csgn-Error-Rate

All Scenarios 92.1% 2.8% 97.8% 0.6%

Medium 92.7% 2.7% 97.9% 0.5%

Heavy 91.7% 2.9% 97.8% 0.6%

Baseline 91.8% 2.8% 97.5% 0.6%

Solution 92.4% 2.8% 98.1% 0.5%

The differences between baseline and solution runs, as observed in in Table 4 on the
word level, also occurred on the semantic level. This is not surprising, as problems at the
word level cannot be fully compensated for on the semantic level. The Concept Recognition
module is robust, which is shown by a command recognition rate for full commands
of 92.1% and a callsign recognition rate of 97.8% in Table 6, with a word error rate of
over 3%. When the ATCos were supported by ASRU in solution runs, the understanding
performance increased on both the command level and the callsign level. Table 7 shows the
performance on the semantic level, considering different WER and analyzing the influence
of different parts of the full command on the extraction performance.

Table 7. Performance at the semantic level quantified as recognition and error rates.

Level of Evaluation WER Cmd-Recog-Rate Cmd-Error-Rate Csgn-Recog-Rate Csgn-Error-Rate

Full Command

3.1%

92.1% 2.8% 97.8% 0.6%

Only Label 92.5% 2.4% 97.8% 0.6%

Only Label, offline 93.4% 1.7% 97.9% 0.5%

Only Label, gold
0.0%

99.3% 0.3% 99.9% 0.1%

Full Command, gold 99.1% 0.4% 99.9% 0.1%

The “Full Command” row represents the quality of all instruction elements, even
those that were never shown in the radar label of this application, such as GREETING,
CALL_YOU_BACK, DISREGARD. As our application only considered callsign, type, and
value as important, the “Only Label” row shows the rates when unit, qualifier etc., are
ignored, but still for all command types, independent of whether they were shown in the
radar label. After the validation exercise, the rates were recalculated offline, considering the
elimination of certain obvious software bugs. The recalculated rates for the “Only Label” row,
based on the same word sequence inputs, are shown in the “Only Label, offline” row. These
reported rates for all three rows received the same word sequences with an average WER
of 3.1% as input. The output of the S2T block was the same, with a 3.1% WER in the offline
row. Assuming a perfect S2T block with a word error rate of 0%, a command recognition
rate of 99.3% is achieved. When considering the full command in “Full Command, gold”
row, including also conditions, qualifiers etc., a command recognition rate of 99.1% is
obtained. Both rows show that the Concept Recognition module effectively models the
utilized phraseology, suggesting that improved S2T performance would further improve
semantic-level performance.

4.1.3. Effects of Callsign Prediction on Semantic Extraction Performance

The two rows labeled “No Context” in Table 8 show the performance when context in-
formation is disregarded. The callsign recognition rate decreases from 99.9% to 81.6%, even
with a perfect S2T engine (“gold”). For a detailed explanation, please refer to Section 4.2.2.
The command recognition performance is only slightly lower at 80.6%. The row labeled
“No Context, S2T” also shows the performance without using the available callsign informa-
tion, but instead using a real S2T engine with a WER of 3.1%. In this case, the command
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recognition rate considerably decreases from 92.1% to 66.9%, and the callsign recognition
rate decreases from 97.8% to 71.6%.

Table 8. Performance without using callsign prediction.

Full Command WER Cmd-Recog-Rate Cmd-Error-Rate Csgn-Recog-Rate Csgn-Error-Rate

No Context, gold 0.0% 80.6% 14.4% 81.6% 14.1%

No Context, S2T 3.1% 66.9% 22.1% 71.6% 20.9%

The results of this section, presented in Table 8, demonstrate the impact of using
callsign prediction. Without callsign prediction, the system performance is insufficient.
However, with command prediction, we generate benefits for the ATCo with respect to
workload reduction, which is shown in the next two sections.

4.2. Subjective Results from ATCo Feedback

This section describes the results provided by the subjective ATCo feedback, which
includes ISA, NASA-TLX, Bedford Workload Scale, SUS, CARS, and the three SHAPE ques-
tionnaires: (i) SASHA ATCo, (ii) SATI, and (iii) AIM, as described in the previous section.

4.2.1. Instantaneous Self-Assessment Measure

The results from ISA provide a retrospective self-assessment of the perceived mental
workload by the ATCos. Table 9 shows the ISA results based on the paired t-test from the
validation trials. The ISA mean values were calculated for both scenarios (M and H) under
conditions with and without ASRU support. Delta ISA and min α were calculated with
and without considering sequence effects. A negative delta ISA value indicates that the
mean ISA value was lower in the solution run compared to the baseline run.

Table 9. ISA value results and significance analysis.

Value Composition Medium Scenario Heavy Scenario Combined

with ASRU 2.39 2.87 2.63
ISA mean

without ASRU 2.48 3.26 2.87

ISA delta −0.09 −0.39 −0.25

min α
SE

10.6% 0.5% 0.3%

ISA delta −0.03 −0.39 −0.21

min α
NSE

42.6% 1.1% 3.1%
SE = sequence effect; NSE = no sequence effect; minimal α values, shaded in green for 0% ≤ α < 5%, and in yellow
for (|α| ≥ 10%).

It can be observed that all delta ISA values are negative, independent of whether
sequence effects are considered. This indicates that solution runs received lower mean
ISA values, suggesting that using ASRU support reduces the perceived mental workload
of ATCos. Furthermore, the impact of considering sequence effects can be seen. The
consideration influences the mean ISA value, reduces sigma, and improves the statistical
significance. The minimal alpha value (α min) decreases from 0.7% to 0.3%. Examining the
ISA mean values reveals that supporting ATCos with ASRU lowers the mean ISA value in
both the M and H scenarios. However, the greatest impact can be seen for the H scenario.
Here, the mean ISA value over all simulation runs was almost 15% lower. This result
indicates that ASRU support is particularly effective in reducing the ATCos’ perceived
mental workload during high traffic hours, corresponding to the H scenario.

4.2.2. NASA TLX

Table 10 shows the differences in the six NASA TLX question ratings, which was
calculated as the mean solution value minus the mean baseline value. The last row provides
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a summary by displaying the arithmetic average of all six ratings. Weights between 1 (low
workload) and 10 (high workload) were possible, as described in Section 3.

Table 10. Results of NASA TLX questionnaires for the different traffic scenarios with and without
compensating for sequence effects.

Medium Heavy Both

Diff α Diff α Diff αHypotheses

SE NSE SE NSE SE NSE SE NSE SE NSE SE NSE

MD −0.08 −0.35 44.2% 14.0% −0.50 −0.50 17.9% 17.5% −0.29 −0.42 22.8% 8.5%

PD −0.42 −0.54 14.9% 4.8% −1.08 −1.08 2.5% 2.0% −0.75 −0.81 1.4% 0.4%

TD −0.08 −0.26 43.2% 23.6% −0.33 −0.33 24.3% 20.8% −0.21 −0.30 26.9% 13.6%

OP 0.42 0.38 −6.1% −7.6% −0.08 −0.08 44.8% 44.7% 0.17 0.15 −31.5% −33.1%

EF −0.58 −0.93 22.6% 1.9% −0.75 −0.75 4.1% 2.9% −0.67 −0.84 6.5% 0.2%

FR −0.33 −0.50 29.6% 17.9% 0.08 0.08 −45.4% −44.7% −0.13 −0.21 39.6% 30.7%

Summary −0.18 −0.37 34.0% 9.2% −0.44 −0.44 15.9% 13.0% −0.31 −0.41 15.6% 4.4%

Minimal α values are shaded in green for 0% ≤ α < 5%, in light green for 5% ≤ α < 10%, in light red for light
evidence (−10% ≤ α < −5%) that results were worse with ASRU support, and in yellow for the rest (|α| ≥ 10%).
MD = mental demand, PD = physical demand, TD = temporal demand, OP = operational performance, EF = effort,
FR = frustration. The blue color of “OP” is explained in the text below.

The four columns labeled “Medium” show the results of the performed t-test for the
medium traffic scenarios. The columns labeled “Heavy” show the results for the heavy
scenario, and the columns below “Both” combine the “Medium” and “Heavy” columns.
The six columns labeled “Diff ” show the average differences in the answers between the
runs with and without ASRU support. Negative values indicate a lower workload in the
solutions runs with ASRU support. The “SE” columns contain the values before eliminating
the sequence effects, while the “NSE” columns show the values afterward elimination. The
six columns under “α” show the p-value, which indicates the statistical significance or the
probability of the null hypothesis (see Section 3.3) being valid. In the following discussion,
we will focus only on the values in the “NSE” columns. However, we also include the
values in the “SE” columns to show the effectiveness of our SECT approach.

The differences in the “Diff ” columns for the “Heavy” scenarios did not change when
considering sequence effects. In the case of the medium traffic scenarios, the differences
slightly vary because there were more solution runs as the first runs of the day compared
to the baseline runs (with a ratio of seven to five). Therefore, the differences in columns
“Both” also change.

In the majority of cases, the application of SECT led to an improvement in statisti-
cal significance, resulting in a decrease in the p-value. This shows the value of SECT in
compensating for sequence effects. For the medium runs, statistically significant results
(α < 5%) were obtained in two out of the six cases when the sequence effects were elimi-
nated. Without eliminating the sequence effects, the results are not statistically significant.
For the heavy traffic scenarios, the (color of the) statistical significance did not change,
but in all cases, α decreased or did not change. For the combined scenarios, the statistical
significance improved in five out of two cases, and in two cases, it “improves” to a different
statistically significant range, transitioning from a yellow color code to light green or from
light green to green.

Question “1” (MD) addresses the mental demand, which decreased by 0.5 units out
of 10 in the heavy traffic scenarios, but with a high standard deviation. Question ”2” (PD)
addresses the physical demand, which showed a statistically significant decrease in all runs.
The same trend was observed for the related question (EF): “How hard did you have to work
to accomplish your level of performance?”. The answers to (TD), “How hurried or rushed was the
pace of the task”, did not exhibit statistically significant changes. The same applies to (FR)
“discouraged, irritated, stressed” and (OP) “successfully accomplishing the task”. For the latter,
there was even a tendency for the ATCos to subjectively believe that they performed better,
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at least in the heavy traffic runs without ASRU support. Later sections show that this was
only a subjective feeling.

Question 4 (OP) “How successful were you in accomplishing, what you were asked to do?”
is the only question for which the answer “low” corresponded to a poor performance.
An explanation could be that some ATCos did not always recognize this when answering
the questions. We mark these questions in the following tables in blue as the blue “OP”
indicates in Table 10. It should be pointed out again, that we have transformed the answers
already before presenting them in the table, so that negative differences mean “better
with ASRU”.

4.2.3. Bedford Workload Scale

Table 11 displays the results from the Bedford Workload Scale after performing the
t-test, as described previously. Medium, Heavy, and Both represent the corresponding results
for the scenarios used during the validation trials. Columns indicated by SE show the
results with sequence effects. Columns with NSE show the results after compensating for
the sequence effects.

Table 11. Results of the Bedford Workload Scale for the different traffic scenarios with and without
compensating for the sequence effects.

Medium Heavy Both

Diff α Diff α Diff αHypotheses

SE NSE SE NSE SE NSE SE NSE SE NSE SE NSE

Average −0.42 −0.49 11.1% 6.1% −0.33 −0.33 18.7% 16.7% −0.38 −0.41 6.7% 3.8%

Peak −0.33 −0.44 15.9% 4.6% −0.17 −0.17 34.4% 34.3% −0.25 −0.31 17.2% 10.4%

Summary −0.38 −0.47 11.9% 4.2% −0.25 −0.25 23.6% 22.7% −0.31 −0.36 9.0% 4.6%

Minimal α values are shaded in green for 0% ≤ α < 5%, in light green for 5% ≤ α < 10%, and in yellow for the rest
(|α| ≥ 10%). The columns were previously explained in the NASA TLX results Section 4.1.2.

The average and peak workload change for ATCos in the M scenario ranged from
[−0.33 to −0.49]. Thus, the average and peak workloads were lower with ASRU support.
In the H scenario, the differences ranged from [−0.17 to −0.33]. The highest value for the
difference was calculated for the average workload. The statistical significance for the H
scenario remained largely unchanged with or without considering sequence effects, ranging
from 16.2% to 34.1%. For both scenarios together, the differences between with and without
ASRU support fall within the interval of [−0.25 to −0.41], indicating an overall improved
perceived workload (lower) when using ASRU support. Statistical significance mostly
improved after compensating for sequence effects. The results for the peak workload are
not statistically significant, because the α values are still greater than 10%.

Overall, the results from the Bedford Workload Scale demonstrate that applying ASRU
support for ATCos improved the results by lowering the perceived workload. Greater
effects were recorded for the M scenario compared to the H scenario. Nevertheless, the
relative change was minor. Compensating for the sequence effects significantly improved
the statistical significance in all cases. In addition to the results from the Bedford Workload
Scale, direct feedback was also gathered from ATCos. This feedback is summarized below.

There are three areas of feedback regarding the factors contributing to high workload
for ATCos: (1) HMI aspects that were related to ASRU, (2) HMI aspects that were not related
to ASRU, and (3) simulation aspects such as the amount of traffic, the simulation-pilots,
and the requirement to enter all clearances into the system.

Regarding “HMI aspects that were related to ASRU”, the ATCos identified areas for
improvement in the radar label interaction, such as reduced scrolling, using drop-down
menus for inputs, and addressing issues with incorrect system inputs, especially if the
callsign was wrongly recognized. However, some ATCos also acknowledged the potential
usefulness of ASRU if they were more familiar with the new HMI. The aspect of “getting
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used to the HMI” was also the main criticism for the second feedback area, “HMI aspects
that were not related to ASRU”. The differences between the TopSky system used in
Vienna and the prototypic CWP in Braunschweig caused some difficulties, such as the
unavailability of distance measuring or the number of required clicks for system input.
Most of the feedback concerned the third area of simulation aspects, where ATCos faced
a high traffic load in the high-density traffic scenario. This included radio frequency
congestion due to many transmissions, different speed handling, sometimes uncommon
flight profiles, a few inaccurate simulation-pilot inputs, and more traffic than they were
accustomed to handling alone. The main difference may have been the requirement to
enter all instructed commands into the ATC system, which the ATCos do not need to do in
their usual system.

4.2.4. System Usability Scale (SUS)

Table 12 displays the results of the SUS after performing a t-test, as described previ-
ously. Medium, Heavy, and Both represent the corresponding results for the scenarios used
during the validation trials. Columns indicated by SE show the results with the sequence
effects. Columns with NSE show the results after compensating for the sequence effects.

Table 12. Results of system usability scale for the different traffic scenarios with and without
compensating for the sequence effects.

Medium Heavy Both

Diff α Diff α Diff αHypotheses

SE NSE SE NSE SE NSE SE NSE SE NSE SE NSE

1 −1.10 −1.06 2.4% 2.7% −1.00 −1.00 0.9% 0.8% −1.05 −1.03 0.1% 0.1%

2 −1.20 −1.18 0.3% 0.4% −0.80 −0.80 1.5% 1.5% −1.00 −0.99 2 × 10−4 2 × 10−4

3 −1.50 −1.46 3 × 10−6 6 × 10−6 −1.00 −1.00 0.3% 0.3% −1.25 −1.23 3 × 10−7 3 × 10−7

4 0.20 0.22 −24.3% −21.9% 0.70 0.70 −1.8% −1.8% 0.45 0.46 −2.1% −1.8%

5 −0.80 −0.84 2.2% 1.5% −1.00 −0.94 1.6% 1.5% −0.89 −0.89 0.1% 0.1%

6 −0.40 −0.35 7.4% 8.5% 0.00 0.00 NR −50.0% −0.20 −0.17 15.9% 16.9%

7 −0.20 −0.22 24.3% 22.5% −0.30 −0.30 16.0% 15.9% −0.25 −0.26 11.1% 10.3%

8 −1.29 −1.28 0.1% 0.1% −1.40 −1.40 0.6% 0.7% −1.35 −1.35 1 × 10−4 1 × 10−4

9 −0.80 −0.76 0.9% 1.1% −0.70 −0.70 4.8% 3.6% −0.75 −0.73 0.2% 0.2%

10 −0.30 −0.39 22.2% 15.2% −0.10 −0.10 37.3% 36.6% −0.20 −0.25 20.8% 15.0%

Summary −0.75 −0.74 0.2% 0.2% −0.55 −0.55 0.8% 0.8% −0.65 −0.64 8 × 10−5 8 × 10−5

Minimal α values are shaded in green for 0% ≤ α < 5%, in light green for 5% ≤ α < 10%, in orange if we had high
evidence (−5% ≤ α < 0%) that the results were worse with ASRU support, and in yellow for the rest (|α| ≥ 10%).
“NR” means “no result”, i.e., the average deviations are 0.0%. The columns were previously explained in the
NASA TLX results section. Sometimes, not all ATCos answered all questions. In rare cases, a different number of
answer pairs were obtained for starting with baseline or starting with solutions runs. Therefore, the entries in
columns SE and NSE for the heavy traffic scenarios can be different, as shown for question 5. The blue colors in
column 1 are already explained at the end of Section 4.2.2.

The results from the SUS assessment show the highest changes in the M runs when
comparing runs with and without ASRU support, which range between 0.22 and −1.46.
Thus, in most reported cases, the ASRU support enabled a better usability of the system.
Statistical significance (p-value) ranged between 3 × 10−8% and −50%. For the M runs, in
three cases, a p-value larger than |20%| was reported (bold framed cells) after compensat-
ing for the sequence effects, which indicates no statistical significance. For the H scenario,
the differences ranged from [−1.4 to 0.70]. In one case (question 4), the p-value of −1.8%
indicated that the results were statistically significance and indicate a better performance
without ASRU support. Row 4 indicates that “I think that I would need the support of a technical
person to be able to use this system”. The same effect can be seen for that question, when
analyzing the results of the t-tests for both scenarios combined, since the experience with
the given system was relatively low compared to their general working experience with
the TopSky system. However, when all 10 questions (row “summary”) were combined,
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the results indicated that the overall system had a higher usability while using the ASRU
support during the common ATC task. The statistical significance was very high, with an
average value of 8 × 10−5.

4.2.5. Controller Acceptance Rating Scale (CARS)

Table 13 shows the results of the CARS analysis. Medium, Heavy, and Both represent
the corresponding results for the scenarios used during the validation trials. Columns
indicated by SE show the results with sequence effects. Columns with NSE show the results
after compensating the sequence effects.

Table 13. Results of the controller acceptance rating scale (CARS) for the different traffic scenarios
with and without compensating for sequence effects.

Medium Heavy Both

Diff α Diff α Diff αHypotheses

SE NSE SE NSE SE NSE SE NSE SE NSE SE NSE

Maturity −1.90 −1.72 2.3% 3.7% −1.22 −1.12 2.7% 4.6% −1.50 −1.36 0.3% 0.7%

Minimal α values are shaded in green for 0%≤ α < 5%, see the NASA TLX results Section 4.2.2 for column names.

The CARS results show that for each scenario (M and H) as well as when combining
both scenarios (Both), the differences were between −1.12 (Heavy) and −1.36 (Both) on
the 10-point scale after compensating for sequence effects. This suggests that the ATCo
acceptance increased with the usage of ASRU support compared to simulation runs without
ASRU support. The p-values for all three cases were below 5%, indicating that the null
hypothesis is invalid and there is statistical significance with the usage of ASRU support.

4.2.6. Situation Awareness for SHAPE (SASHA)

Table 14 shows the results of the SASHA analysis. SASHA is the first of three assess-
ments from the SHAPE questionnaire, which analyses the situational awareness of ATCos.
Medium, Heavy, and Both represent the corresponding results for the scenarios used during
the validation trials. Columns indicated by SE show the results with sequence effects.
Columns with NSE show the results after compensating for the sequence effects.

Table 14. Results of situation awareness using SHAPE for the different traffic scenarios with and
without compensating for sequence effects.

Medium Heavy Both

Diff α Diff α Diff αHypotheses

SE NSE SE NSE SE NSE SE NSE SE NSE SE NSE

1 −0.09 −0.13 35.6% 25.4% −0.50 −0.50 1.1% 0.9% −0.30 −0.32 3.2% 1.4%

2 0.18 0.16 −21.0% −22.6% −0.17 −0.17 20.9% 20.9% 0.00 −0.01 NR 47.8%

3 −0.55 −0.58 1.0% 0.2% −0.42 −0.42 12.5% 9.5% −0.48 −0.49 1.4% 0.5%

4 −0.27 −0.28 12.8% 11.7% −0.33 −0.33 14.2% 11.2% −0.30 −0.31 6.1% 4.3%

5 0.00 −0.01 NR 47.2% 0.00 0.00 NR NR 0.00 −0.01 NR 49.1%

6 −0.09 −0.18 42.8% 32.0% −0.58 −0.58 7.7% 2.8% −0.35 −0.39 13.8% 5.5%

Summary −0.14 −0.17 21.5% 8.6% −0.33 −0.33 8.2% 5.3% −0.24 −0.26 5.4% 1.8%

Minimal α values are shaded in green for 0% ≤ α < 5%, in light green for 5% ≤ α < 10%, and in yellow for
|α| ≥ 10%, “NR” means “no result”, i.e., the average deviations are 0.0%. The columns itself and the blue color
in column 1 were previously explained in the NASA TLX results Section 4.2.2.

The SASHA results show that for the M, H, and Both scenarios, the average differences
were between −0.17 (Medium) and −0.33 (Heavy) after compensating for the sequence
effects. This suggests that the situational awareness of the ATCos slightly increased across
all scenarios when using the ASRU support during the simulation runs. The greatest
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positive impact on the ATCos’ situational awareness was recorded during the H scenario.
The p-values after compensating for the sequence effects reduce for the Both scenarios
combined (α = 1.8%) to below 5%. This indicates that the null hypothesis was invalid and
the statistical significance improved with the use of the ASRU support. For the M scenario,
the p-value after compensating for sequence effects was 8.6%, and for the H scenario, it
was 5.3%. Here, the statistical significance was slightly improved with SECT. One possible
explanation is that during the M scenarios, the ATCos had more time to verify their current
planning process (situational awareness) and thus did not feel the need for any support
system. However, during the H scenario, there was less time between different verbal ATC
instructions to check their own planning process. In this case, the spare time obtained
through the ASRU radar label input was valued even more, which improved the ATCos’
situational awareness.

4.2.7. SHAPE Automation Trust Index (SATI)

Table 15 shows the results of the SATI analysis. SATI was the second of three assess-
ments from the SHAPE questionnaire, which analyzed the ATCos’ trust in the automated
functions or systems. Medium, Heavy, and Both represent the corresponding results for the
scenarios used during the validation trials. Columns indicated by SE show the results with
sequence effects. Columns with NSE show the results after compensating for the sequence
effects.

Table 15. Results of the SHAPE Automation Trust Index (SATI) for the different traffic scenarios with
and without compensating for sequence effects.

Medium Heavy Both

Diff α Diff α Diff αHypotheses

SE NSE SE NSE SE NSE SE NSE SE NSE SE NSE

1 −1.10 −1.21 4.4% 2.7% −2.09 −2.07 2 × 10−4 2 × 10−4 −1.62 −1.66 1 × 10−4 5 × 10−5

2 0.10 0.14 −42.6% −39.8% −0.45 −0.45 12.5% 12.7% −0.19 −0.17 27.9% 29.8%

3 0.10 0.21 −42.6% −34.0% −0.64 −0.60 5.8% 5.9% −0.29 −0.21 19.4% 24.8%

4 −0.70 −0.66 9.4% 10.4% −1.09 −1.05 0.8% 0.6% −0.90 −0.87 0.4% 0.4%

5 −0.10 −0.12 43.3% 41.9% −1.45 −1.45 3 × 10−4 3 × 10−4 −0.81 −0.82 1.5% 1.4%

6 −1.10 −1.23 6.8% 3.7% −1.18 −1.11 6.2% 5.9% −1.14 −1.17 1.5% 0.8%

Summary −0.47 −0.48 17.7% 17.0% −1.15 −1.12 0.2% 0.2% −0.83 −0.82 0.5% 0.5%

Minimal α values are shaded in green for 0% ≤ α < 5%, in light green for 5% ≤ α < 10%, and in yellow for
|α| ≥ 10%. The columns were previously explained in the NASA TLX results Section 4.2.2.

The SATI results show that for the M scenario, H scenario, and the combined Both
scenarios, the average difference ranged from −0.48 (Medium) to −1.12 (Heavy) after
compensating for sequence effects. This suggests that he ATCos’ trust in the system
increased when using the ASRU support compared to the simulation runs without ASRU
support. The highest average difference was recorded during the H scenario. The p-value
ranged below 5% for the H scenario (α = 0.2%) and Both scenarios (α = 0.5%), indicating
that the null hypothesis was invalid and the usage of ASRU support increased the statistical
significance. For the M scenario, the average p-value was greater than 10% (α = 17.0%),
which indicates that no increase in trust could be achieved by using ASRU support. This
applies before and after compensating for sequence effects. During the M scenario, the
ATCos might have had enough time to explore the system and were not dependent on
ASRU support. This effect could have decreased the statistical significance compared to
the H scenario, where there was less time to create doubts and the system had to be used
as implemented.

4.2.8. Assessing the Impact on Mental Workload (AIM)

Table 16 shows the results of the AIM analysis. AIM was the third of three assessments
from the SHAPE questionnaire used in this study, which analyzed the ATCos’ mental
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workload experienced. Medium, Heavy, and Both represent the corresponding results for the
scenarios used during the validation trials. Columns indicated by SE show the results with
sequence effects. Columns with NSE show the results after compensating for the sequence
effects.

Table 16. Results of assessing the impact on mental workload for the different traffic scenarios with
and without compensating for sequence effects.

Medium Heavy Both

Diff α Diff α Diff αHypotheses

SE NSE SE NSE SE NSE SE NSE SE NSE SE NSE

1 0.33 0.22 −22.7% −29.1% −0.08 −0.08 39.3% 37.1% 0.13 0.07 −32.1% −38.5%

2 0.42 0.29 −20.8% −26.5% −0.67 −0.67 2.3% 1.8% −0.13 −0.19 34.4% 25.7%

3 0.00 −0.14 NR 36.9% −0.75 −0.75 3.5% 3.3% −0.38 −0.44 12.0% 6.3%

4 0.25 0.15 −28.5% −35.4% −0.50 −0.50 6.2% 6.0% −0.13 −0.17 32.5% 25.3%

5 0.75 0.60 −4.7% −5.3% 0.00 0.00 NR NR 0.38 0.30 −8.3% −10.0%

6 0.82 0.63 −4.1% −7.8% 0.18 0.21 −31.2% −28.0% 0.50 0.42 −4.7% −6.9%

7 0.08 −0.07 −43.2% 43.2% −0.42 −0.42 13.7% 13.3% −0.17 −0.24 29.5% 18.8%

8 0.58 0.54 −8.6% −10.0% −0.17 −0.17 32.2% 29.0% 0.21 0.19 −22.9% −23.7%

9 −0.17 −0.39 37.5% 12.6% −0.67 −0.67 8.2% 8.1% −0.42 −0.53 11.9% 3.4%

10 0.17 −0.03 −37.2% 47.1% −0.25 −0.25 22.2% 21.6% −0.04 −0.14 44.5% 28.5%

11 0.50 0.40 −11.1% −14.7% −0.30 −0.28 20.5% 22.1% 0.10 0.06 −35.9% −41.0%

12 0.58 0.54 −4.9% −5.9% −0.42 −0.42 4.2% 4.1% 0.08 0.06 −35.4% −38.8%

13 0.58 0.46 −9.4% −12.1% −0.58 −0.58 2.9% 2.5% 0.00 −0.06 NR 40.3%

14 0.08 −0.10 −43.0% 39.1% −0.50 −0.50 1.1% 1.1% −0.21 −0.30 21.3% 7.3%

15 0.17 0.00 −35.6% NR −0.42 −0.42 2.3% 2.2% −0.13 −0.21 30.8% 14.8%

Summary 0.32 0.19 −20.4% −27.3% −0.38 −0.38 2.6% 2.5% −0.03 −0.10 44.3% 30.2%

Minimal α values are shaded in green for 0% ≤ α < 5%, in light green for 5% ≤ α < 10%, in orange, if we have
high −5% ≤ α < 0% or in light red for (−10% ≤ α < −5%), and yellow is used for the rest (|α| ≥ 10%), when we
have no statistical significance in any direction. “NR” means “no result”, i.e., the average deviation was 0.0%. The
columns were previously explained in the NASA TLX results Section 4.2.2.

The AIM results show that for the M scenario, the average difference was 0.19 after
compensating for sequence effects (row “Summary”, column “NSE”). This suggests that
using the ASRU support increased the mental workload. For the H scenario and when
combining both scenarios, the average difference ranged from−0.10 (Both) to−0.38 (Heavy)
after compensating for sequence effects. These results indicate that the mental workload
decreased during the simulation runs when using the ASRU support compared to the
simulation runs without ASRU support.

The average p-value results for the M scenario (α = −27%) and when combining Both
scenarios (α = 30%) were greater than |10%|. This indicates that no statistical significance
could be achieved when using the ASRU support. For the H scenario, the average p-value
was 2.5% after compensating for sequence effects. This indicates that for the H scenario,
the null hypothesis was invalid and the mental workload was improved by using the
ASRU support.

4.3. Objective Results

In this section, the results from the secondary task (Stroop test) and the performance
measurements are analyzed and discussed.

4.3.1. Results from Secondary Task—Stroop Test

Table 17 shows the result when the ATCos’ successfully performed Stroop tests for
the different traffic scenarios without and with compensating for the sequence effects. The
results are obtained from [29].
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Table 17. Number of successfully performed Stroop Tests.

Medium Heavy Both

Diff α Diff α Diff α

SE NSE SE NSE SE NSE SE NSE SE NSE SE NSE

11.3 13.5 9.3% 3.6% 14.3 14.3 3.6% 2.3% 12.8 13.9 1.3% 0.3%

Minimal α values are shaded in green for 0%≤ α < 5%, see the NASA TLX results Section 4.2.2 for column names.

The Stroop test results show that for each scenario (Medium and Heavy) as well as
when combining both scenarios, the difference ranged from 13.9 (both) to 14.5 (Medium).
This indicates that the ATCos were able to perform more successful Stroop tests using the
ASRU support during the simulation runs. When supported by ASRU, the ASRU performs
many tasks that the ATCos otherwise need to do manually. The average of successfully
solved Stroop tests in the H scenario was 19.9 without ASRU support and 34.2 with ASRU
support (not shown in Table 17). It is important to note that we do not plan to occupy the
ATCo with an additional task. This observation demonstrates that in certain situations,
such as an incident, the ASRU support provides some additional safety buffers in terms
of workload capacity. In the M scenarios, the average number of successfully solved tests
increased from 34.3 without ASRU support to 47.8 with ASRU support. The increase in
both traffic situations was nearly the same, although the command recognition was slightly
worse in the H scenarios, as shown in Table 6. The p-value results were below 5% across
all scenarios. Thus, the null hypothesis was invalid and the number of possible additional
tasks was improved by using the ASRU support.

4.3.2. Missing and Wrong Radar Label Cell Entries

Knowing now that ASRU support reduces ATCo workload, it is important to ensure
the accuracy of the radar label contents after the ATCo has checked the ASRU output,
i.e., if all the given commands show the actual situation in digital form. How often do we
have missing or even wrong inputs? In theory, a person would need to count how often the
radar label contents were different from the spoken commands. However, this approach is
impractical. It is nearly impossible for someone to listen to ATCo utterances, completely
understand them on a word level, transform to the meaning to a semantic level, and
check the radar label contents with the required accuracy. A deviation of approximately
1% is expected. Transcription experiments with humans transcribing voice utterances
has already shown that a word error rate of approximately 4% to 11% can be expected,
especially when a person can only listen once [45]. A computer-based solution is required,
which is described below.

During the experiments, all mouse clicks that changed the radar label cell contents
were recorded, and Table 18 shows the results of these recordings. The correct contents of
each cell for each callsign at any point in time is indirectly given. All ATCo voice transmis-
sions were transcribed and annotated, creating what are known as gold annotations. These
gold annotations were replayed and sent to the software that generated the contents of the
radar label cells. As a result, the clicks are recorded again, but giving us this time the correct
and complete contents of each cell for each callsign at any point in time. The cell contents
during the experiments can then be compared to the correct/gold contents. The compari-
son of the label cell contents during the experiments to the correct contents can be done
automatically, and the calculation can be automatically rerun whenever inconsistencies in
the gold annotations are identified.

Table 18, taken from [29], shows the results for the baseline and the solution runs.
The first column shows the number of clearances given for each cell. We did not count
commands which cleared a value in a field, such as “own navigation” or “no speed restrictions”,
but we considered them when a calculation was missing or when wrong cell entries were
present. The “Gold” column contains the number of commands of this type, resulting from
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the replay of the manual annotations. “Clicks” counts the number of clicks in this cell,
which changed the value of the cell, ignoring clicks that cleared the value.

Table 18. Number of errors in radar-label cells after compensating for sequence effects for the heavy
and medium scenarios.

Baseline Solution

Type Gold Clicks Miss Add RR Gold Clicks Miss Add RR

Alti * 1950 1906 62 20 95% 1978 28 19 16 95%

Spd * 1102 1074 70 35 89% 1183 34 17 3 89%

Head * 936 572 351 8 94% 894 7 30 11 94%

WP * 598 589 29 14 85% 604 20 18 25 87%

Tran * 301 216 89 12 85% 289 7 23 1 88%

Rate * 63 74 13 4 67% 64 11 6 1 74%

Spec * 1367 936 14 15 93% 1372 19 34 15 92%

* Row “Alti” shows the number of commands, which were spoken and would require an input into the altitude
cell in the radar label. “Spd” denotes the speed cell, “Head” denotes the heading cell, “WP” denotes the waypoint
cell, “Tran” denotes the “Transition/Route” cell, “Rate” denotes the descent rate cell, and “Spec” denotes the
ILS/approach clearance and the change frequency command type cell. Cells marked in orange, are analyzed in
more detail in [29].

The “Miss” column counts the number of cell values that were missing, and the “Add”
column represents the number of cell values which were in the cells but not spoken at that
time. “RR” is the command recognition rate for each type. The entries in the cells “Miss”
and “Add” were corrected for sequence effects as described in Section 3.3. However, the
compensation effects were much smaller than for the Stroop test. The greatest change was
by 1.3 in absolute numbers. Some cells in Table 18 are marked in orange, which require
a deeper analysis or additional explanations which are provided in [29]. The sum of clicks
and missing commands did not correspond to the gold column. Sometimes, the same
command was repeated with the same value, due to “say again” or a lack of response from
the simulation-pilots. Additionally, a gold command may sometimes require two entries,
such as when using DIRECT_TO to a waypoint, which should also delete the heading value.

The analysis of the results in Table 18 in [29] has given insights to improve the com-
parison between the correct and actual label values to better reflect how ATCos of Austro
Control work in daily life. The improvements, which were not part of [29], are presented in
Table 19.

Table 19. Number of errors in radar label compensating sequence effects and considering the special
situation of the Vienna Approach Control.

Baseline Solution

Type * Gold Clicks Miss Add RR Gold Clicks Miss Add RR

Alti 1950 1906 58 11 95% 1978 28 19 15 95%

Spd 1102 1074 70 15 89% 1183 34 17 2 89%

Head 936 572 108 4 94% 894 7 13 10 94%

WP 598 589 29 11 85% 604 20 18 24 87%

Tran 301 216 90 11 85% 289 7 22 1 88%

Rate 63 74 13 2 67% 64 11 6 0 74%

Spec 1367 936 13 12 93% 1372 19 34 15 92%

Sum 6317 5367 380 65 6384 126 130 68

* The rows are already explained in the footer of Table 18. The blue and orange color coding of the cells is explained
in the text below.
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• A missing value was not considered twice. For example, if 250 knots were in-
tended/said and the value 240 was accidently entered or wrongly recognized, and
therefore incorrect, Table 18 counted this as missing 250 and as an additional value of
240 in the “Spd” row. In Table 19, missing label cell values were not counted twice if
they already have an entry in the “miss” column for the same given command value.
This and other corrections reduced the sum of column “Add” from 145 to 65 in the
baseline runs. The effect in solution runs was a minor reduction from 73 to 68.

• Missing entries for 2600 feet were not counted as “Miss” or “Add” because this was
the interception altitude at the final approach fix, which was not instructed by ATCo
after the “cleared ILS” instruction.

• If a heading value was given together with an ILS clearance, we did not expect an
entry in the heading cell. This reduced the number of missing heading values from
351 in Table 18 to 107 in Table 19 for the baseline runs.

The values in Table 19 shaded in blue were previously explained in [29]. The cells
marked in orange require a deeper analysis.

• In 70 instances, the ATCo missed entering the given speed value or entered a wrong
value. No systematic reason was observed. CAS (calibrated air speed) speed values
between 160 and 300 were involved, and the majority were between CAS 160 and
CAS 220. It was assumed that the high workload prevented the ATCo from inputting
the given speed value in some situations, accounting for 6.5% of the cases.

• TRANSITION commands were not deemed as important for the ATCos of Austro
Control. They did not input a given transition command in their operational TopSky
system. Nevertheless, Austro Control had designed the experiment and the HMI in
such a way that the ATCos should input the cleared transitions, which is a benefit of
using ASRU support with respect to situation awareness.

• The same applies for the given heading commands that were not input manually.

The initial question was how to verify the number of missing ATCo commands in the
label cells with and without ASRU support. This was done by replaying the annotated
utterances. The next question was if all the missing commands were corrected by the ATCo.
The numbers in Table 19 show that this was not the case. However, it was also not the case
when the ATCo manually inputs all commands. We performed paired t-tests as described
in Section 3.3 to validate whether the differences were statistically significant. We used the
data after compensating for the sequence effects from Table 19. The results without and
with compensating sequence effects are shown in Table 20.

Table 20. Minimum alpha values for the hypothesis that ASRU improves the correctness of radar
label cell contents without and with compensating for sequence effects.

Hypotheses Medium Heavy Both

SE NSE SE NSE SE SNE

Alti. 5.0 × 10−4 5.0 × 10−4 9.2% 8.1% 2.2 × 10−4 4.7 × 10−4

Spd 2.0% 2.0% 0.6% 5.4 × 10−3 2.8 × 10−4 5.7 × 10−4

Head 6.2% 6.0% 1.1% 5.6 × 10−3 1.9 × 10−3 2.8 × 10−3

WP 18.7% 17.0% 8.6% 8.5% 4.8% 5.1%

Tran 2.8% 1.3% 8.2 × 10−4 4.7 × 10−4 5.1 × 10−5 1.5 × 10−4

Rate −24.3% −20.7% 3.5% 2.9% 11.4% 11.8%

Spec −6.8% −7.1% −9.3% −9.0% −2.6% −2.9%

Sum 2.9 × 10−3 2.7 × 10−3 2.3 × 10−4 2.3 × 10−4 3.5 × 10−7 3.8 × 10−6

Minimal α values are shaded in green for 0% ≤ α < 5%, in light green for 5% ≤ α < 10%, in orange if we have
evidence that results were worse with ASRU support (–5% ≤ α < 0%), in light red for (–10% ≤ α < 5%), and in
yellow for the rest (|α| ≥ 10%).

Table 20 shows that the results were highly statistically significant for almost all radar
label cells, indicating that the correctness of radar label cells was much better if ATCos were
supported by ASRU. However, statistical significance was not observed for the waypoint,
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rate and special radar label cells across all scenarios. The deviation for the “Spec” was
intended by the design of experiment, as described in [29]. The entries of the “Spec”
commands appeared in the forth label line, which was only visible for the ATCo, when the
mouse was hovered over the corresponding radar label.

The results highlight that even with an ASRU command recognition rate of only 92%,
which is already very good compared to other results reported in the context of SESAR-2
ASRU validation exercises [7], the ATCos workload and their human performance was
not negatively impacted. Furthermore, there are an abundance of safety nets such as
Monitoring Aids (MONA), Cleared Level Adherence Monitoring (CLAM), Route Adher-
ence Monitoring (RAM), Short-term Conflict Alert (STCA), and Medium-term Conflict
Detection (MTCD), which would prevent any critical safety event. Additionally, the use
of eye-tracking to verify whether the ATCo visually scanned the ASRU output can help
to further reduce the negative effect of ASRU errors. In case the ATCo did not check the
ASRU output within a certain time period, auditory or visual attention guidance could be
a possible solution.

5. Conclusions

The main research question was to quantify of the benefits of Automatic Speech Recog-
nition and Understanding (ASRU) support for ATCos performing radar label maintenance
in terms of safety and human performance. Therefore, an extensive human-in-the-loop
study with twelve Austro Control ATCos was carried out at DLR Braunschweig. A method
to compensate for sequence effects was introduced, which improved the statistical sig-
nificance by a factor of two on average, thus reducing the number of required ATCos.
Furthermore, for the first time, we were able to analyze how many radar label inputs were
incorrect when ASRU support was provided and when it was not available.

The measured accuracy of speech-to-text and text-to-concept has shown that the ASRU
technology functions reliably and robustly. For all radar cells, a command recognition rate
of 92.5% with an error rate of 2.4% was achieved.

In terms of flight safety, the number of wrong or missing inputs from ATCos into
the radar label was reduced by a factor of more than two through ASRU support usage
(from 11% to 4%). Hence, ATCos had more mental spare capacity when using ASRU
support for radar label maintenance, which is crucial for safety in unforeseen events such as
an incident. This was demonstrated through a secondary task, where occupying less mental
capacity in the primary task (air traffic control) increased the situational awareness among
ATCos, which can be beneficial in safety-critical situations. These findings were confirmed
by the results of the SASHA questionnaire, with a statistical significance of α = 1.8%.
The reduction in workload was measured using NASA TLX, ISA, Bedford, SHAPE, and
AIM questionnaires.

In addition to the impact of ASRU support on flight safety and workload, the ATCos
reported an increased satisfactory and trust level in human-system performance when
using the ASRU support. The results from the CARS and SATI questionnaire showed
that ATCos acceptance increased, with α = 0.7%, and improved trust with high statistical
significance (α = 0.5%). Overall, flight safety and human performance was significantly
improved when ATCos use ASRU support for radar label maintenance.

The ANSP involved in the study designed the user interface in a way that required the
ATCos to input all commands into the ATC system, which is not done by ATCos in their
current operational system. In the future, ANSPs are strongly recommended to have all
commands in digitized form, ensuring that the CWP offers a way to enter the commands
without significantly increasing ATCo workload. The presented ASRU technology is
a lightweight method to support this transition and increase situational awareness as an
additional benefit when all commands are integrated into the ATC system.
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Appendix A

For the following questionnaires, different scales were applied to answer or rate the
corresponding question or statement. These scales can be found in the correspondent
section.

Appendix A.1. Questions Used for NASA TLX

1. How mentally demanding was the task?
2. How physically demanding was the task?
3. How hurried or rushed was the pace of the task?
4. How successful were you in accomplishing what you were asked to do?
5. How hard did you have to work to accomplish your level of performance?
6. How insecure, discouraged, irritated, stressed, and annoyed were you?

Appendix A.2. Statements Used for SUS Questionnaire

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.

Appendix A.3. Statements Used for SASHA Questionnaire

1. In the previous run, I was ahead of the traffic.
2. In the previous run, I started to focus on a single problem or a specific aircraft.
3. In the previous run, there was a risk of forgetting something important (such as

inputting the spoken command values into the labels).
4. In the previous run I was able to plan and organize my work as wanted.
5. In the previous run I was surprised by an event I did not expect (such as an aircraft call).
6. In the previous run I had to search for an item of information.
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Appendix A.4. Statements Used for SATI Questionnaire

1. In the previous working period, I felt that the system was useful.
2. In the previous working period, I felt that the system was reliable.
3. In the previous working period, I felt that the system worked accurately.
4. In the previous working period, I felt that the system was understandable.
5. In the previous working period, I felt that the system worked robustly (in difficult

situations, with invalid inputs, etc.).
6. In the previous working period, I felt that I was confident when working with

the system.

Appendix A.5. Questions Used for AIM Questionnaire

1. In the previous run, how much effort did it take to prioritize tasks?
2. In the previous run, how much effort did it take to identify potential conflicts?
3. In the previous run, how much effort did it take to scan radar or any display?
4. In the previous run, how much effort did it take to evaluate conflict resolution options

against the traffic situation and conditions?
5. In the previous run, how much effort did it take to anticipate the future traffic situation?
6. In the previous run, how much effort did it take to recognize a mismatch of available

data with the traffic picture?
7. In the previous run, how much effort did it take to issue timely commands?
8. In the previous run, how much effort did it take to evaluate the consequences of

a plan?
9. In the previous run, how much effort did it take to manage flight data information?
10. In the previous run, how much effort did it take to recall necessary information?
11. In the previous run, how much effort did it take to anticipate team members’ needs?
12. In the previous run, how much effort did it take to prioritize requests?
13. In the previous run, how much effort did it take to scan flight progress data?
14. In the previous run, how much effort did it take to access relevant aircraft or flight

information?
15. In the previous run, how much effort did it take to gather and interpret information?
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Abstract: The information air traffic controllers (ATCos) communicate via radio telephony is valuable
for digital assistants to provide additional safety. Yet, ATCos have to enter this information manually.
Assistant-based speech recognition (ABSR) has proven to be a lightweight technology that automati-
cally extracts and successfully feeds the content of ATC communication into digital systems without
additional human effort. This article explains how ABSR can be integrated into an advanced surface
movement guidance and control system (A-SMGCS). The described validations were performed in
the complex apron simulation training environment of Frankfurt Airport with 14 apron controllers in
a human-in-the-loop simulation in summer 2022. The integration significantly reduces the workload
of controllers and increases safety as well as overall performance. Based on a word error rate of 3.1%,
the command recognition rate was 91.8% with a callsign recognition rate of 97.4%. This performance
was enabled by the integration of A-SMGCS and ABSR: the command recognition rate improves by
more than 15% absolute by considering A-SMGCS data in ABSR.

Keywords: air traffic controller; simulation pilot; workload; assistant-based speech recognition;
automatic speech recognition and understanding; apron control; STARFiSH

1. Introduction

This article is an extended version of [1].
In air traffic control (ATC), there is a permanent need to increase the efficiency of

handling air and ground traffic. This need exists especially at highly frequented airports
such as Frankfurt. However, increasing efficiency must never come at the expense of safety.
An important approach to increase efficiency and safety on the ground is by supporting
ground traffic controllers’ decision making through digitization and automation with
new digital assistant systems that are integrated in or interoperate with advanced surface
movement guidance and control systems (A-SMGCS) [2]. Currently, A-SMGCS already
monitor data from different sensors and are designed to enable controllers to guide traffic
more safely without reducing the capacity of traffic guidance.

1.1. Motivation

The most advanced digital assistants in apron control today already have access to
a large number of sensors. Together with manual inputs from the controller, the digital
assistants are able to detect potentially dangerous situations and warn the controller about
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them. In contrast, voice communication between controllers and pilots, one of the most im-
portant sources of information in ATC, has not yet been used by these assistants. Whenever
information from voice communication needs to be digitized, controllers are burdened with
the additional task of entering this information into the ATC system. Research results show
that up to one third of controllers’ working time is spent on these manual entries [3]. This
leads to a reduction in overall efficiency as controllers spend less time optimizing traffic
flow [4]. The amount of time spent on manual inputs will even increase in the coming
years as future regulations require more alerting functions to be implemented, hence more
inputs are needed, especially in apron control, e.g., Commission Implementing Regulation
(EU) 2021/116 [5].

Assistant-based speech recognition (ABSR) has already shown in the past that it is
possible to significantly reduce manual input from controllers by recognizing and under-
standing the controller–pilot communication and automatically providing the required
inputs into digital assistants [6]. ABSR technology has been continuously developed in
several projects, and possible fields of application have been identified in the context of
research prototypes. So far, there has been no initial integration into a commercial system
to demonstrate that ABSR can also meet the corresponding requirements for safety and
usability in a system network commonly used in aviation. In the German Federal Ministry
of Education and Research funded project STARFiSH (Safety and Artificial Intelligence
Speech Recognition), a powerful artificial intelligence (AI)-based speech recognition system
was integrated into a modern A-SMGCS for apron control [1]. The solution was supposed
to reduce the additional workload of controllers as much as possible by using speech
recognition and understanding capabilities. At the same time, the solution was supposed
to be objectively safe and be rated as reliable, easy to use, and safe by the controllers.

1.2. Related Work

This section outlines related work for automatic speech recognition (Section 1.2.1) and
understanding applications (Section 1.2.2) in air traffic control and closes with related work
on how both are used to automatically fill digital flight strips or radar labels with voice
information from the controller–pilot communication in Section 1.2.3.

1.2.1. Early Work on Speech Recognition in Air Traffic Control

Speech Recognition in general has a long history of development. It started in 1952
when Davis, Biddulph, and Balashek of Bell Laboratories built a digit recognition system
for a single speaker called “Audrey” [7]. Over the last 70 years, technological advances
have led to dramatic improvements in the field of speech recognition. An overview of
the first four decades is provided by, e.g., Juang and Rabiner [8]. Connolly from FAA was
one of the first to describe the steps of using automatic speech recognition (ASR) in the air
traffic management (ATM) domain [9]. In the late 1980s, a first approach to incorporate
speech technologies in ATC training was reported [10]. Such developments led to enhanced
ASR systems, which are used in ATC training simulators to replace expensive simulation
pilots, e.g., FAA [11,12], DLR [13], MITRE [14], and DFS [15].

The challenges with ASR in ATC today go beyond basic training scenarios, where often
standard procedures and ICAO phraseology [16] are followed very closely. Modern ASR
applications have to recognize experienced controllers, who more often make deviations
from the mentioned standards. Furthermore, applications with ASR also go beyond just
the scope of simulation and training. ASR is for example used to obtain more objective
feedback concerning controllers’ workload [17,18]. A good overview of the integration of
ASR in ATC is provided in the two papers of Nguyen and Holone [19,20].

1.2.2. Speech Recognition and Understanding Applications in Air Traffic Control

In the recent past, research projects developed prototypical applications with speech
recognition and understanding for all ATC domains from en route [21], via approach [4],
to tower and ground [22]. These prototypes support controllers in maintaining aircraft

96



Aerospace 2023, 10, 596

radar labels [23] and flight strips [22] to reduce workload, recognize and highlight aircraft
callsigns [24], build safety nets for tower control [25], or even offer automatic readback
error detection with reports to controllers [26,27]. The systems have matured to recognize
words and meanings of real-life controller and pilot utterances even beyond the simulated
environments [28]. The rules of how a speech understanding system can annotate the
meaning conveyed with ATC radio transmissions are defined in an ontology that was
agreed between major European air traffic management stakeholders in 2018 [29]. With this
ontology, different word sequences can be mapped to unique word sequence meanings,
e.g., the word sequences “lufthansa zero seven tango taxi via november eight and november
to stand victor one five eight” and “zero seven tango via november eight november victor
one five eight” both correspond to the same annotation in the ontology “DLH07T TAXI
VIA N8 N, DLH07T TAXI TO V158”.

1.2.3. Related Work for Pre-Filling Flight Strips and Radar Labels

The information which air traffic controllers communicate via radio telephony is valu-
able for digital assistants to provide additional safety. Yet, controllers are usually burdened
with entering this information manually. Assistant-based speech recognition (ABSR) has
been shown to be a lightweight technology that automatically extracts ATC communi-
cation content without additional human workload and that successfully feeds digital
systems [6]. DLR, together with Austro Control, DFS, and other European air navigation
service providers, has demonstrated that pre-filling radar labels supported by automatic
speech recognition and understanding reduces air traffic controllers’ workload [3] and
increases flight efficiency with respect to flight time and kerosene consumption. Fuel burn
can be reduced by 60 L per aircraft in the approach phase [4]. DLR, Austro Control, Thales,
and the air navigation service provider of Czech Republic have redesigned this exercise
with a commercial off-the-shelf speech recognizer and an industrial radar screen. The exer-
cise results clearly showed that speech recognition, i.e., obtaining the sequence of words
from a voice signal, is not enough [30]. Speech understanding is needed for providing
information for flight strips and radar labels.

Recently DLR and Austro Control analyzed the safety aspects of using speech recogni-
tion and understanding for pre-filling radar label contents. They investigated how many of
the verbally spoken approach controller commands, with and without speech recognition,
were finally entered into the ATC system and how many errors were made, not recognized,
or not corrected by the air traffic controllers. Despite manual corrections of commands even
with speech recognition and understanding support, about 4% of the spoken commands
were still not correctly entered into the system. However, this result, which is initially
alarming from a safety point of view, is quickly put into perspective, when considering that
roughly 10% of the verbally spoken commands are incorrectly or not entered at all into the
system, if no speech recognition and understanding support is available. More details are
provided in [23]. The results show that speech recognition and understanding [31] is far
from being perfect, but a system without speech recognition and understanding seems to
be even further away.

One of the main input sources for this paper, which describes the results or transform-
ing the support tool for approach controllers to apron controllers, were two studies of DLR:
one from 2015 for the Dusseldorf approach [4] and a recent one for the Vienna approach
control [23]. It was expected that the good results of command recognition in the approach
area will translate one-to-one to the correctness and completeness of inputs in the apron
area. Previous projects have already taken first steps towards using speech recognition
and understanding in a tower or apron environment, which included for example the
prediction of potential controller commands [32]. The actual use of speech recognition
and understanding was then further investigated in a multiple remote tower setup [33].
In the process, relevant information for digital flight strips was automatically derived
and entered from the given verbal commands. The tower environment already covered
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many of the command types relevant for ground/apron traffic such as taxi, hold short, and
pushback instructions.

1.3. Paper Structure

Section 2 summarizes the use case of supporting apron controllers, the iterative
software development approach and introduces the Software Failure Modes, Effects, and
Criticality Analysis. Section 3 describes the final version of the evaluation system. Section 4
explains the validation of the developed application. Section 5 presents the validation
results before Sections 6 and 7 finalize the paper with discussions and conclusions.

2. Materials and Methods
2.1. Application Use Case of Supporting Apron Controllers

Initially, the apron controller, shown as “ATCo” in Figure 1, issues a command to
the pilot by radio. Without ABSR (Figure 1, left), the controller enters this command
into the A-SMGCS manually either before, afterwards, or in parallel to the radio call
so that the system can provide automation functions. With ABSR (Figure 1, right), an
ABSR-system automatically generates, based on the radio call, a data packet including
metadata from the command, which is sent to the A-SMGCS. The A-SMGCS executes
valid commands and highlights the changes together with the associated aircraft symbol.
No system interaction by the controller is required unless an error has occurred. If the
automatic speech recognition fails, the controller needs to manually correct or enter the
command in the same way as without the ABSR system.
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ABSR component (left) and with an ABSR component (right).

The automatic recognition of voice commands issued by controllers to pilots should
provide a solution to the problem that controllers are less able to keep an eye on traffic
when they enter the information of the radio call that is necessary for modern A-SMGCS
support functions. This includes, for example, entering taxi routes so that compliance can
be monitored automatically.

From a technical point of view, the sequence of actions is:

1. Commands given via voice by the controller to the pilot are recorded as an audio data
stream (A/D conversion of utterances).

2. The audio stream is divided into sections by detecting individual transmissions in the
audio data.

3. Speech-to-text (S2T) transformation is applied on the resulting audio sections. S2T is
based on neural networks trained with freely available data as well as with domain-
specific recorded audio data for the target environment.

4. Relevant ATC concepts are automatically extracted from the S2T transcription using
rule-based algorithms on a previously defined ontology and traffic data fed from
the A-SMGCS.

5. High-level system commands are generated from the extracted ATC instructions using
rules algorithmically interpreted from operational necessities according to the current
traffic situation and fed into the system.
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6. The changes to the system state resulting from the high-level system commands are
presented to the human operators.

7. Human operators can correct or undo the automatic inputs.

We explain these steps by an example:

1. The apron controller is continuously speaking to the pilots with some gaps in between,
e.g., “ . . . to seven five seven from the left . . . lufthansa four two two good morning
behind opposite air france three twenty one continue november eight lima hold short
lima six . . . austrian one foxtrot behind the passing”. The gaps occur either because
no further action is required or due to the verbal response of the (simulation) pilot,
which is not available to the ABSR.

2. The audio stream sections are detected, and one continuous transmission could then
be “lufthansa four two two good morning behind opposite air france three twenty
one continue november eight lima hold short lima six”.

3. Let us assume that the result of S2T contains some errors and results in the word
sequence: “lufthansa four to two good morning behind opposite air frans three twenty
one continue november eight lima holding short lima six” (errors marked in bold).

4. The relevant ATC instruction, being extracted by ABSR even with the errors from S2T,
would be:

a. DLH422 GREETING;
b. DLH422 GIVE_WAY AFR A321 OPPOSITE;
c. DLH422 CONTINUE TAXI;
d. DLH422 TAXI VIA N8 L;
e. DLH422 HOLD_SHORT L6.

5. The GREETING is ignored by the A-SMGCS. For the GIVE_WAY instruction the
A-SMGCS may find out that the A321 from the opposite is the callsign AFR2AD. A
symbol is generated in the human machine interface (HMI) of the apron controllers
(and the simulation pilots), showing that DLH422 is waiting until the AFR2AD has
passed. The continue statement is executed after the give way situation is resolved.
The route along the taxiways N8 and L is shown. A hold short (stop) is displayed
before taxiway L6.

6. In summary, the following visual output is shown to the apron controller:

a. The aircraft symbol of DLH422 is highlighted;
b. A GIVE_WAY symbol between the two aircrafts;
c. The taxi route via N8 and L;
d. A HOLD_SHORT symbol (stop) at L6.

7. The apron controller can accept or reject all three above options or can change some
or all of them.

For the controller, almost all processing steps are invisible. Technology remains in the
background. From the human operator’s point of view, the sequence of actions is like this:

1. The callsign addressed in the controller’s radio call is highlighted at the corresponding
aircraft symbol in the A-SMGCS (DLH422 in the above example).

2. Once the commands to the pilot are fully uttered, they are converted into correspond-
ing system commands that would otherwise have to be manually entered, e.g., a
taxi route.

3. The result of the command input is displayed to the controller (and/or simulation
pilot) in the A-SMGCS. Wherever possible, the visualization corresponds to the same
visualization that would have resulted from a manual entry.

4. Special case: If an error in the data processing causes the wrong command to be sent
and therefore the wrong effects (or none) to be displayed, the human operator must
manually correct the command or enter it into the system. Depending on the type of
command, dedicated buttons are offered for this purpose.
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2.2. Application Development

The solution was created in four main iterations following the spiral model of software
development [34]. For this purpose, an ABSR system was integrated with the A-SMGCS
system TowerPad™ (see Figure 1) by iterating the following steps:

• Technical and operational requirements were determined;
• Software and interfaces were developed, implemented, and tested;
• Progress was validated by users in realistic operational scenarios in Fraport’s training

simulator;
• Results were analyzed to derive new requirements.

In the end, the system was intensively validated in realistic simulations with apron
controllers and evaluated based on recorded data and defined metrics. The safety aspects
detailed in the next subsection were addressed and focused on in the third iteration.

2.3. Safety Considerations

In aviation, a system can only be approved for operation if its impact on safety has
been thoroughly assessed. This is even more important if it uses technology that is new and
for which the currently available safety assessments are not necessarily suitable. For the
use of artificial intelligence-based methods, discussions are taking place in the community
regarding how the safety of AI methods can be verified or demonstrated. These discussions
happen independent from air traffic management application areas.

However, there is a way out of the dilemma of the lack of approved testing and
verification methods, which we saw in the STARFiSH project as a possibility to safely
operate a system with AI-based speech recognition and understanding. If the AI system
can be encapsulated in such a way that safety-critical outputs cannot have an immediate
impact on real-world operation and must always be approved by the user of the system
prior to implementation, safety will be verified during operation. However, manual
checking of commands means additional effort that one does not want to impose on users
for system inputs that cannot have any safety-critical consequences. Thus, it was important
to identify which commands have effects that are safety-critical from an operational view.

In order to determine, which system inputs are safety-critical in this sense and which
are not, a safety analysis based on the classification in Figure 2, must be performed that
first determines, independently of the solution, which system inputs are potentially safety-
relevant because they can endanger operational safety. For this analysis, we followed
the EUROCONTROL “safety assessment methodology” (SAM) and applied the SFMECA
methodology that is at the core of the “functional hazard analysis” (FHA).
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is a bottom-up method that analyzes so-called failure modes and their effects to identify
(hidden) hazards at the system level. Using the standardized structure and presentation
of the process and results specified by the SFMECA, a team of experts used predefined
and individual “failure modes” to analyze which safety-relevant effects could be caused
by the software and what their causes were for the functional requirements in the project.
The requirements were grouped according to features and pre-filtered according to the
evaluation dimensions:

• Safety-criticality;
• Criticality for the work of the controller;
• Risk due to potential software development errors.

Then the error cases (in categories “functionality”, “timing”, “sequencing”, and “data,
error handling”) were quantitatively evaluated with their respective “root cause”, checking
for 26 common causes plus specific functional errors, e.g., “misdetection of callsign under
own jurisdiction”.

The evaluation criteria were the severity of the effects, their probability of occurrence,
and the probability of timely detection of the error case. Each of these criteria was evaluated
in ten gradations for each failure mode and its cause, and a risk priority number (RPN) was
calculated. For sufficiently high RPNs, the SFMECA provides steps to be defined on how to
reduce the risk with mitigation actions. In the project, the mitigation action envisaged was
to let the controller decide on such commands instead of executing the commands directly.

Section 5.7.1 presents the results of the SFMECA and even shows that in our use case,
the distinction into good and bad recognitions is not needed.

3. Description of Evaluation System

The final validation trials were conducted on five consecutive days in the apron
simulator in Frankfurt in summer 2022. All necessary data were recorded, subsequently
processed, evaluated, and documented along the agreed validation concept.

For the trials, an evaluation system was created that allowed us to test the hypotheses
set from the project description and to adapt them to the experience gained. The follow-
ing section describes the final evaluation system as it was integrated into the Fraport
apron simulator.

3.1. Technical Integration into the Simulator

While the validation system was necessary to perform the final validation trials, its
design was developed in iterations. From the start of the project and as a very basic technical
integration, it was used to test the planned system’s architecture and functionality. It was
also used to record speech and validation data necessary for the iterative improvement of
artificial intelligence (AI)-based speech recognition and understanding during each training
session. The actual speech data were recorded, and the A-SMGCS position data, flight
plan data, and commands entered by the simulation pilot were logged. Additionally, the
recorded speech data were transcribed (a word-for-word transcript of the uttered speech)
and annotated (information on the contained commands in the defined ontology). The
recorded data were used to train the speech recognition models and adapt the algorithms
for speech understanding and callsign prediction. The data used for training and adaptation
contained 19 h of audio data without silence from 14,567 single utterances, aligned with
corresponding transcriptions. Furthermore, around 8.5 h with respect to 7132 utterances of
the transcribed data were annotated in the defined ontology. Both the transcription and
annotation processes are based on automatic pre-transcription/pre-annotations generated
by the speech recognition and understanding components in the quality available within
the different iterations. The manual verification and correction of the pre-transcripts were
executed by a human expert from Fraport who is familiar with the airport layout, the
procedures, and so on. The pre-annotations were verified and corrected by experts from
the DLR, which are familiar with the defined ontology and its components.

101



Aerospace 2023, 10, 596

The part of the Fraport simulator that was used in the project consists of a simulation
room for the apron controllers and a control room for the simulation pilots (see Figure 3).
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In operational mode, there are two different workstations. The Movement Controller
(MC) workstation guides the aircraft. English is spoken on the flight frequency. In Frankfurt,
three Movement workstations are usually manned, named East, Center, and West (see
Figures 3 and 4). In addition to the Movement workstations, there are Operational Safety
Controllers (OSC). These workstations guide the tugs and assign the follow-me vehicles.
German is spoken on these frequencies. For training, usually the MC and two OSC are
assigned and split in two different rooms. It was decided to not use OSC during simulation,
so that five instead of three simulation days were possible with the same effort of the
involved apron controllers. Everything was located in one simulation room.
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for the Frankfurt apron control.

In the simulator environment, simulation pilots act as counterparts for the controllers.
They sit in the simulation pilot room (left part in Figure 3). The task of the simulation pilots
is to move the aircraft as instructed by the controller and to provide readback of uttered
commands. The simulation pilot is in control of the same aircraft as the controller, and,
therefore, controls several aircraft. The simulation pilots, like the controllers, are assigned
to designated work areas (East, Center, and West). Thus, the controller always talks to the
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same simulation pilot during a simulation session and vice versa. Three MC workstations
and three active simulation pilot positions were evaluated through ABSR support.

To use ABSR in the simulator like in real operations, various data had to be exchanged
between the simulator software (ATRiCS AVATOR™), the A-SMGCS (ATRiCS TowerPad™),
and DLR’s ABSR system (see Figure 5).
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The surveillance data in Asterix CAT 20 format as well as flight plans and Collabora-
tive Decision Making (CMD) Times were sent to the ABSR system and evaluated by the
callsign prediction module. The audio recordings were first processed by the voice activity
detection, then by the speech-to-text component, and finally by the speech understanding
component. These results (ATC concepts) were forwarded as commands to the A-SMGCS
and simulation pilot workstations. The latter control the traffic and radar simulator and
visualization. This was performed by means of a transmission control protocol/internet
protocol (TCP-IP) connection. Another interface was used to transmit flight plan data from
the simulator to the ABSR system. The main interface was from the ABSR system to the
A-SMGCS. Here, the recognized commands were passed to the A-SMGCS for visual display
on the simulation pilot workstation and on the apron controller workstation, respectively.
The interfaces and software programs as well as traffic scenarios were successfully tested
in the first iteration of the project.

After the first iteration, new functions were integrated and tested in the simulator
and the ABSR system in short intervals. In this way, it was possible to quickly check
whether the interaction of the software worked and whether the adjustments represented
an improvement or had no significant or even negative effects and should, therefore, be
removed again.

Similar to the development process, an iterative approach was also taken to evaluate
the results. An evaluation basis was defined and tested during the iterations and contin-
uously improved. During these tests, it was determined that an objective measure of the
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cognitive load placed on controllers by system inputs was needed. Using eye-tracking
sensors would have been one way to measure how often the controller’s gaze is on the
implemented ABSR output, e.g., to provide manual input and to determine how often the
simulated traffic can be observed from an outside view. However, after further experiments,
the decision was made to use a much less complex measurement method by means of
secondary tasks for the participating controllers, see Section 4.4.

In the simulations, different traffic situations were used as scenarios. Scenarios from
30 min to 60 min were tested, as well as high, medium, and low traffic. After various tests,
the length of 30 min and very high traffic density seemed to be most suitable to validate or
falsify the validation hypotheses in the final validation trials. Two scenarios were created
for the final validation trial. One scenario included runway operating direction 25, another
one, operating direction 07. The two different operating directions indicate the direction in
which the parallel runway system in Frankfurt is used, i.e., the direction in which aircraft
take off and land. The direction depends on the weather, in particular on the wind, since
landings should be made against the wind direction if possible. During operating direction
25, the runways 25 left (25 L) and 25 right (25 R) were used for inbounds/arrivals. The
runways 18 and 25 center (25 C) were used for outbounds/departures. During operating
direction 07, inbounds used 07 L and 07 R, whereas outbounds used 07 C and 18, i.e., in
both scenarios, two inbound and two outbound runways were in use. On the ground, the
operating directions affect the taxi guidance since the aircraft are then guided on other
taxiways to the stand or runway. Accordingly, the ABSR and the integration of the systems
could be tested in different situations. Consequently, the results should be more general
and transferable to other traffic scenarios and other airports.

3.2. Assistant-Based Speech Recognition

The core of the ABSR system implemented in the STARFiSH project mainly consists of
three modules (see Figure 6), which perform the conversion of the audio signal into recog-
nized word sequences (speech recognition), the prediction of the relevant callsigns (callsign
prediction), and the extraction of the semantic meaning of apron controller commands
(speech understanding).
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The only mandatory input signal to the system is the voice radio of the apron controller.
To improve the recognition quality of the ABSR system, radar and flight plan information
is also provided by the A-SMGCS. These data allow the generation of relevant contextual
information, such as the list of aircraft callsigns that are currently relevant for operations
per area of responsibility, that can be directly integrated into the recognition process of
the ABSR system. In addition to the three central modules, for technical reasons, see
Section 3.2.1, the project also had to implement and integrate a voice activity detection
for the ABSR system, which determines when a controller’s radio transmission starts and
when it ends. Figure 6 provides an overview of the interfaces between the core modules.
The following sections describe each module in more detail.
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3.2.1. Voice Activity Detection

The goal of the ABSR system in STARFiSH is to recognize and understand the uttered
commands of apron controllers. Since the audio signal is transmitted as a continuous
stream of data from the voice communication system to the ABSR system, even when
there is no speech at all, the system needs a way to detect the points in time a dedicated
radio transmission has started and ended. Therefore, a signal is required that indicates the
beginning and end of a radio message to the ABSR system. The most precise signal for
this purpose would be the so-called push-to-talk (PTT) signal. This signal is triggered by
controllers each time they push or release the button on the microphone they are using to
start or end a radio transmission to a pilot. However, for technical reasons, the PTT signal
could not be accessed for use in this project. To compensate for this problem, STARFiSH
uses voice activity detection, i.e., the acoustic signal is analyzed to determine when a
transmission begins and ends. The start and end of radio transmissions are detected based
on the duration of previously detected silence states and a probability of reaching the end
of the voice signal. Five predefined rules for detecting the end of a segment online from
Kaldi have been considered without further adaptations [36].

3.2.2. Speech Recognition, i.e., Speech-to-Text (Transcriptions)

As soon as the voice activity detection detects the beginning of a radio transmission,
the audio signal is forwarded to the S2T component, and the recognition process immedi-
ately starts converting the audio signal into word sequences. This means that the speech
recognition system starts the recognition process as soon as the apron controller begins the
radio transmission. The system then continuously provides intermediate recognitions until
the controller reaches the end of the radio transmission. For example, a controller might
say the following:

“lufthansa three charlie foxtrot taxi alfa six two alfa via november one one november
november eight at november eight give way to the company A three twenty from the
right”.

Let us assume that this sentence could be recognized and output by the S2T component
in the following increments:

1. “lufthansa three charlie”;
2. “lufthansa three charlie foxtrot taxi alfa six two alfa via”;
3. “lufthansa three charlie foxtrot taxi alfa six two alfa via november one one november november

eight”;
4. “lufthansa three charlie foxtrot taxi alfa six two alfa via november one one november november

eight at november eight give way to”;
5. “lufthansa three charlie foxtrot taxi alfa six two alfa via november one one november november

eight at november eight give way to the company A three twenty from the right”.

The speech recognition engine is implemented as a hybrid deep neural network
combined with a hidden Markov model (HMM). It is combined with a convolutional neural
network factorized time delayed neural network (CNN-TDNNF) with six convolution
layers and fifteen factorized time-delay neural networks. Overall, the model has around
31 M trainable parameters. The whole model is trained with a so-called “lattice-free
maximum mutual information” as an objective function. The system follows the standard
chain LF-MMI training recipe [37] of Kaldi [38], which uses high-resolution “Mel frequency
cepstral coefficients” and i-vectors as input features. A typical 3-gram language model was
trained and adapted using domain-specific data.

Starting from a base model, the speech recognition engine was continuously improved
with new training data during the course of this project. An integration of context knowl-
edge from callsign predictions was also implemented and contributes to the improvement
of the recognition performance.
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3.2.3. Speech Understanding

When a word sequence is transmitted from the S2T component, it is analyzed by the
speech understanding module and converted into relevant ATC concepts, as originally
defined in an ontology [29]. According to this ontology, the above word sequence “lufthansa
three charlie foxtrot taxi alfa six two alfa via november one one november november eight at
november eight give way to company A three twenty from the right” is transformed into the
following commands:

• DLH3CF TAXI TO A62A;
• DLH3CF TAXI VIA N11 N N8;
• DLH3CF GIVE_WAY DLH A320 RIGHT WHEN AT N8.

In total, this radio transmission contains three commands. Here, the pilot of the aircraft
with the callsign DLH3CF was instructed to taxi to parking position A62A via the taxiways
N11, N, and N8. When arriving at taxiway N8, the pilot of the aircraft must give way to a
Lufthansa (DLH), which is from the same company as the pilot addressed, has the aircraft
type A320, and is coming from the right (RIGHT), before being allowed to continue taxiing.

In the case of intermediate detections from the speech recognition engine, the speech
understanding module is able to provide early recognition of the callsign or, if required,
early recognition of subsequent commands. The speech understanding implementation is
based on a rule-based algorithm that identifies the relevant parts step by step and converts
them into ATC commands. For more information, see [39].

The speech understanding module does not only convert the word sequences into
ATC concepts but also makes an initial decision as to whether the extracted commands
might be erroneous. Potentially erroneous commands are caused either by an erroneous
interpretation of the rule-based algorithm, by an already erroneous word sequence due
to a misrecognition of the speech recognition engine, or by misleading formulations of
the controller. The decision, whether a command could be erroneous, is based on simple
heuristic rules that determine which commands can occur together in a radio transmission.
Here are some of the rules, explained by examples:

• It is logically not possible that an aircraft is instructed in a single radio transmission
to taxi to two different target positions, e.g., a “TAXI TO” to two different parking
positions, runways, or both in one transmission is impossible. Therefore, the mod-
ule would automatically discard all “TAXI TO” commands within the transmission.
Of course, with more information, it might be possible in some cases to determine
which of the target positions is the correct one and only neglect one of the “TAXI
TO” clearances, but that would require quite complex knowledge about the airport
infrastructure to be implemented within the speech understanding component. The
target application, on the other hand, which receives information from speech under-
standing, usually already has the required knowledge about the airport and therefore
is more suitable to handle this task.

• A similar example would be a “TURN LEFT” and a “TURN RIGHT” command within
one transmission and no other command in between, which is also impossible and
would therefore be neglected for the same reasons.

• A less obvious example is the recognition of a “PUSHBACK” and a “TAXI TO” com-
mand in one transmission. Theoretically this might seem possible, but also these
commands do not appear together and if they do, the error is usually a wrongly
extracted “TAXI TO”. Therefore, the heuristic says to always neglect the “TAXI TO” in
this case.

However, the examples above show also that erroneous commands can only be
detected if the error case is predefined. Therefore, confidence measures have furthermore
been implemented for speech understanding output and are used to reduce possible false
recognitions. These confidence measures can also be applied to the error cases listed
above instead of neglecting the erroneous commands, but this requires that the application
receiving the information is able to implement it. This means that the application then has
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to determine which command to neglect or not. In the end, all errors that are not detected,
either by speech understanding or by the application, have to be handled manually by the
apron controller in charge.

Analogous to speech recognition, speech understanding was also continuously devel-
oped and adapted based on new information. Just as in speech recognition, an integration of
context knowledge from callsign prediction takes place and contributes to the improvement
of recognition performance.

3.2.4. Callsign Prediction

Callsign prediction receives both radar and flight plan information from the A-SMGCS.
The module uses these data to determine which callsigns may be part of a radio transmission
in the near future. The radar information is used in the first step to obtain an overview of
the available callsigns in the airport area. However, since many aircraft are in the airport
area, but not all will be actively participating in taxiing traffic in the near future, the module
also uses flight plan information dynamically provided by the A-SMGCS to determine
more precisely which of the available callsigns will be addressed in the near future. For
this purpose, the responsible controller position, the target startup approval time (TSAT),
the actual take off time (ATOT), the actual landing time (ALDT), and the actual in block
time (AIBT) are extracted from the flight plan. All relevant callsigns are forwarded to the
speech recognition module (callsign boosting) and the speech understanding module to
include the callsigns in the process of recognition and understanding. More information on
the technique of callsign boosting, used within the speech recognition module to enhance
recognition, can be found here [40,41]. The integration of callsign predictions in the speech
understanding module transforms the callsigns into possible word sequences and calculates
the closest match to the recognized word sequence based on the Levenshtein distance [42]
to determine the correct callsign.

3.2.5. Concept Interpretation

The final stage of integrating an ABSR system into an A-SMGCS represents the testing
for operational plausibility, interpretation, and implementation of the extracted concepts or
commands. Figure 7 shows the running integration of ABSR into the A-SMGCS at one of
the simulation pilot stations.
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• Controller instructions via voice convey exactly the information that is necessary and
sufficient for the addressed pilot in the current traffic situation. Globally, however,
these instructions can be ambiguous. It is, therefore, necessary for an information
technology system to unambiguously identify the addressed pilot and to make assump-
tions about his/her contextual knowledge in order to be able to exclude ambiguities
from this perspective. A GIVE_WAY command from the right could identify several
aircraft that approach from the right at the same time or consecutive taxiway crossings.
The system has to determine the correct one that is implied from the traffic context.

• The extracted concepts may be erroneous. Either the controller has made a mistake,
so that the verbal instruction does not correspond to what would be advised in the
current traffic situation, or errors have occurred in the recording of the speech, the
pause recognition, the conversion to text, or the speech understanding, so that the
extracted concept is erroneous and should not be implemented.

These two sources of error cannot be distinguished. The task of this module is to admit
only those commands into the assistance system that are plausible and fit into the current
traffic context. If inappropriate commands are delivered by the ABSR system, the user must
be given the opportunity to manually correct the error. This is technically implemented by
the following steps, which are detailed in Appendix B:

1. Preprocessing;
2. Highlight the aircraft symbol on the basis of the recognized callsign;
3. Trigger multiple actions based on a single command;
4. Discard commands incompatible with the traffic situation;
5. Correctly interpret context-dependent commands;
6. Complete incomplete commands from the current traffic situation;
7. Convert commands;
8. Deal with detected errors;
9. Deal with undetected errors and identify error sources.

3.3. Usability Considerations

A key element to the successful implementation of automation features is the user
interface. Since automation reduces the necessary interactions with the system, users may
miss automatically executed actions. It is thus essential that users are still able to see
all system states that are relevant for safe operations. In addition, it must be possible to
quickly analyze and correct errors in the event of automation failure. This is a necessary
requirement of operational safety, especially in aviation, where errors can lead to accidents.

In the STARFiSH project, the automation functions as well as the user interface were
first implemented in a purely functional way and then analyzed in operation with the end
users to iteratively overcome the challenges. This involved asking questions such as: Is
the right information available, and is the right information being perceived? Is the user
interface not overloaded with information, i.e., is important information also perceived
more easily than less important information? Are delays sufficiently low?

Using various elicitation techniques (observation, brainstorming, and interviews), user
requirements were thus determined in an iterative manner, and new target formulations
were achieved. In total, 30 users participated in 29 evaluation days, distributed over the
four iterations in the course of this project.

3.3.1. Visualization of the Automation Actions (Feedback)

In iteration 1, the main focus was to be able to check the technical integration of
the systems, i.e., to investigate the question of whether recognized commands reach the
human operator and are available in time from an operational point of view. Therefore, the
following were implemented first:
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• Display the recognized transcriptions and the resulting annotations (ATC commands)
on the side of the ABSR output log, in order to be able to compare the output of the
ABSR system with the received data on the TowerPad™.

• Log data at the interfaces of the ABSR system and on the working position computers
of the controllers and simulation pilots, in order to be able to analyze, after the
simulation runs, whether the correct commands arrive in time.

• Log the commands provided by the ABSR system in chronological order on the
working position computers to give users and researchers a way to observe and verify
the results of the speech inputs independently of the implementation of the commands.

During preliminary testing, it became apparent that displaying each recognized com-
mand in a table to support easy troubleshooting did not add value to the operational
users of the system but was distracting. Therefore, the user interface was designed so that
commands generate specific visual feedback which is integrated into the workflow. In
terms of position and design, this resulted in symbolic displays specifically adapted to the
command or very compact dialogs. Although the display as a table was still extended for
troubleshooting, it was no longer visible at the controllers’ working positions during the
trials and was positioned on a second screen outside the focus of the users at the simulation
pilot workstations. It was only used for evaluation and development.

Starting with iteration 3, commands were directly translated into visible actions of the
system. For some actions, it was possible to use the same visual feedback to the human
operator that is used for manual input, for example:

• Change a route;
• HOLD_SHORT command;
• GIVE_WAY command.

There are fundamental advantages to displaying the same feedback in the HMI re-
gardless of the input method (by speech recognition and understanding, or by mouse or
touch gesture), as there is less need for training. On the other hand, users should be able
to identify if the source of a change in the user interface is the speech recognition and
understanding component. This was implemented by the following user interface features:

• Highlighting of the addressed aircraft symbols without disturbing user touch or mouse
input, executed in parallel, additionally multi-highlighting when several commands
are executed in quick succession.

• Feedback for changes, which are scarcely visible when executed manually, such as the
transfer of an aircraft to another working position.

3.3.2. Manual Error Correction

The simulation experiments showed that for some actions, an undo is ambiguous and
not without side effects, e.g., when changing a taxi route. For these actions, it was easier
for human operators to select the desired function directly without prior “undo”, thereby
implicitly overriding the wrong action.

4. Validation Trials

This section presents the preparation and results of the validation trials. All sim-
ulations took place in Fraport’s training simulator, which had been retrofitted for the
experiments and tests.

4.1. Pre-Simulations

During the pre-simulations, the individual parts of the system and their integration
were tested, and exemplary evaluations of the simulation runs were carried out in order to
determine methods for the final validation trial. The basic structure, i.e., the architecture,
remained constant after the initial integration tests.

Controllers and pilots, in their corresponding positions, speak to each other on the
same radio frequency. The ABSR system operates on the voice recordings of the controllers,
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and the command implementation takes place independently in the two instances of the
A-SMGCS for the controllers and simulation pilots, respectively (see Figure 5). For both
groups, ABSR support is enabled either for all working positions or for none.

The simulations in the first iterations served the dual purpose of obtaining feedback
from the human operators and testing the technical integration. In later iterations, the
validation methods themselves were tested as well, i.e., exemplary evaluations of the
simulation runs were performed. For example, the hypotheses regarding the reduction of
taxi times were discarded, since they did not differ significantly.

It was also explored what the scope of traffic should/should not be, and which
additional tasks are suitable to challenge the attention of the users without tying up the
support team too much.

4.2. Validation Plan

Four different combinations of the ABSR support were investigated, as shown in
Table 1:

Table 1. Different combinations of ABSR support investigated during validation trials.

Condition Name Operational Conditions

NO

No ABSR support; manual input, i.e., the baseline scenario.
The controllers manually enter the spoken commands via mouse into the controller’s HMI of the TowerPad™.
Simulation pilots control taxi traffic at their working positions by manual input via mouse and keyboard. This
corresponds to the established mode of operation without ABSR.

JC

Use of ABSR support just for controllers, i.e., automatic command recognition support for controllers plus
manual correction, if ABSR fails.
Commands spoken by the controller are processed by the ABSR system and transmitted to the controller’s
working position, where they are automatically entered for the controller. The controller receives feedback on
the recognized commands via the controller’s HMI and can correct errors via a mouse.
No support by ABSR for the simulation pilots.

JP

Use of ABSR support just for simulation pilots, i.e., automatic command recognition and control for pilots.
The commands spoken by the controllers are processed by the ABSR system, transmitted to the working
position of the responsible simulation pilot, and automatically executed as control commands for the
simulation pilot. The simulation pilot receives feedback on the recognized commands via the simulation
pilot’s HMI and can correct errors via a mouse and keyboard.
No support by ABSR for the controllers.

CP Use of ABSR support for both controllers and simulation pilots, as described individually for JC and
JP conditions.

4.2.1. Validation Hypotheses

The following hypotheses were tested during the final validation trials:

H1. (H-C-less_input): Automatic documentation (conditions JC and CP) reduces the total number
of manual inputs to guide taxiing traffic at the controller’s working position compared to full manual
input (conditions NO and JP).

H2. (H-P-less_input): Automatic command recognition for simulation pilots (conditions JP and
CP) reduces the total number of manual inputs to guide the taxiing traffic of simulation pilots
compared to full manual input (conditions NO and JC).

H3. (H-C-more_cog_res): Automatic documentation (conditions JC and CP) increases the con-
troller’s free cognitive resources compared to full manual input (conditions JP and NO).

H4. (H-C-less_workload): Automatic documentation (conditions JC and CP) reduces the workload
of the controller compared to full manual input (conditions JP and NO).

H5. (H-C-sit_aw_ok): Automatic documentation (conditions JC and CP) does not limit the
controller’s situational awareness compared to full manual input (conditions JP and NO).
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H6. (H-C-conf): The controller’s confidence in command entry automation (conditions JC and CP)
is above average.

H7. (H-P-conf): The simulation pilot’s confidence in command entry automation (conditions JP
and CP) is above average.

H8. (H-E-CmdRR): The command extraction rate (JC, JP, and CP) in the apron environment is
comparable to the quality already achieved in the approach domain by ABSR (command extraction
rate for simulation-relevant commands >90%).

H9. (H-E-CmdER): The command extraction error rate (conditions JC, JP, and CP) in the apron
environment is comparable to the quality already achieved in the approach domain by ABSR
(command extraction error rate for simulation-relevant commands <5%).

H10. (H-E-CsgRR): The callsign extraction rate (conditions JC, JP, and CP) in the apron environ-
ment is comparable to the quality already achieved in the approach domain by ABSR (>97%).

H11. (H-E-CsgER): The callsign extraction error rate (conditions JC, JP, and CP) in the apron
environment is comparable to the quality already achieved in the approach domain by ABSR H11.
(callsign extraction error rate <2%.)

4.2.2. Independent Variables

The independent variables (IV) of the final validation trials were as follows:

1. (IV-Input): Documentation on the controller’s HMI by ABSR vs. manual input (JC
and CP vs. JP and NO).

2. (IV-Control): Control of the simulation by ABSR for the controller’s utterances vs. full
manual input (JP and CP vs. JC and NO).

4.2.3. Dependent Variables

The dependent variables of the final validation trials are listed in Appendix A. The
respective results are each compared between the different operational conditions within
a scenario.

4.3. Execution of the Final Validation Trials

The final validation trials took place from 27th of June to 1st of July 2022 in the apron
simulator in Frankfurt. The number of simultaneously active users was three controllers
and three simulation pilots. For the final trials, 14 controllers were recruited who had
enough experience with the A-SMGCS system (see Figure 8). On each day, a new team of
controllers was on site (one controller participated twice). Half of the participants already
had their first experience with the system at one of the many pre-simulations. The other
half had their first contact with the ABSR system during the final trials.

Two different traffic scenarios were prepared for the final validation trial: one for
runway operating direction (OD) 25 and one for OD 07. The simulation scenarios generated
from these were 30 min long each. Table 2 shows the number of aircraft movements in
total and the projected number of aircraft at each of the three working areas: East, Center,
and West.

Table 2. Number of (#) aircraft in certain areas per operating direction.

Traffic
Scenario # Aircraft # Arriving

Aircraft
# Departing

Aircraft
# Expected

Aircraft East
# Expected

Aircraft Center
# Expected

Aircraft West

OD25 106 46 60 59 61 63

OD07 106 46 60 57 45 59
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In order to generate a heavy workload, the amount of traffic in the scenarios were
increased compared to usual traffic at Frankfurt Airport so that the controllers were as busy
as possible all the time. The heaviest workload with respect to radio frequency usage and
number of commands was expected at the Center position, followed by the East working
position. At the West working position, the load was expected to be lower, even if the
numbers in the Table 2 suggest otherwise. This is partially due to the type of movement
(pushback-aircraft must be pushed from the parking position with the tug, etc.) and the
size of the area. In the West, there were significantly fewer pushbacks, because there were
less nose-in positions (so most aircraft could leave the parking stand forward under their
own power). The number of commands and utterances per position for all runs are shown
in Table 3.

Table 3. Number of commands (# Cmds) and utterances (# Utterances) at each of the three
working positions.

# Cmds % of All # Utterances % of All

Center 5858 38% 2437 38%

West 4376 28% 1654 26%

East 5235 34% 2262 36%

The realistic maximum traffic volume in real operations was 106 per 60 min for 2019.
This amount was used in the simulation trials for half an hour. This increase compensated
for the fact that there were no tows on the apron and other secondary activities that would
otherwise occur in reality and that could not all be represented in the simulator.

Each simulation day began with a briefing of the controllers and simulation pilots
involved. In this briefing, the controllers and simulation pilots were educated on the
concept of ABSR and its interaction with the controller input interface and the simulation
pilot’s working station. They were explained how to make manual entries in the systems
and when these are required (when no ABSR support is active for the respective station, or
a correction is necessary).

In addition, the controllers and simulation pilots were informed about the schedule,
and the questionnaires were introduced. Afterwards, training for controllers and simulation
pilots took place, in which all operational conditions were explained and tried out. During
the training run, the controllers also exercised the secondary task for measuring mental
load after a short introduction on how to perform it. This secondary task is discussed in
more detail in Section 4.4.
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The teams of three controllers and three simulation pilots remained at their working
positions throughout the different simulation runs and operational conditions (OC). On
each day, there were different runs for each of the two operating directions OD07 and OD25.
The teams were always the same for the same OD.

When evaluating the influence of ABSR support on the work of the controller, the
ABSR system was always active for the simulation pilots, i.e., only altered from on to off
and vice versa for the controllers. In addition, two simulation runs were carried out in
OD25, in which the ABSR system was always active on the controller’s side and a change
from on to off and vice versa for the simulation pilots. The influence of the ABSR system
on the simulation pilot’s activity was analyzed, too. Thus, six runs were performed per
day. After each run, the controllers filled out a questionnaire. At the end of the day, an
additional questionnaire was filled out, and the impressions, comments, and hints of the
controllers and simulation pilots were recorded in a non-formal debriefing session with all
participants.

In the runs, in which the ABSR system was alternately on or off for the controller, the
secondary task was performed by the controllers. The task started 10 min after the start of
the run and stopped 10 min later. This was performed simultaneously for all three working
positions. The simulation runs with the different operational conditions and simulation
scenarios were determined as follows in Table 4.

Table 4. Simulation runs with different operational conditions and simulation scenarios.

Simulation Run Name with OD Operational Conditions and Traffic Scenario

T
Training of fully manual input and ABSR-supported

input with manual corrections at controllers’ and
simulation pilots’ working positions.

CP25 ABSR support for controllers and simulation pilots.

JC25 ABSR support just for controllers.

JP25 ABSR support just for simulation pilots.

NO25 No ABSR support.

CP07 ABSR support for controllers and simulation pilots.

JP07 ABSR support just for simulation pilots.

Table 5 below shows the order of the training and experimental runs for each controller-
team, consisting of three persons. The order of the runs was changed each day to reduce
(in the mean of the evaluation) learning effects that may occur during the day.

Table 5. Simulation runs per controller team and day.

Team 1 Team 2 Team 3 Team 4 Team 5
Day 1 Day 2 Day 3 Day 4 Day 5

T T T T T

NO25 CP25 JP25 JP25 JP07

JC25 JP25 NO25 CP25 CP07

JP25 JC25 CP25 JP07 CP25

CP25 NO25 JC25 CP07 JP25

JP07 CP07 JP07 NO25 JC25

CP07 JP07 CP07 JC25 NO25

4.4. Objective Workload Measurement by a Secondary Task

The questionnaires reflect the subjective experiences of the controllers, which one
might argue to be the most important measure for most operationally deployed systems.
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Nevertheless, we wanted to obtain more objective data that would confirm or reject our
hypothesis that the proposed system reduces workload.

To measure mental load, we used a secondary task that required similar skills to the
main task (controlling traffic), namely mental focus, English language proficiency, color
recognition, and quick orientation on the user interface, and yet that was simple enough to
be performed in parallel with the main task.

In the pre-simulations, subjects were asked to sort decks of playing cards as a sec-
ondary task to measure free mental capacity and were then made to answer questions about
missing cards (“which 1–4 cards were missing?”), as was described in [3]. However, the
use of this task required too much manual effort and, therefore, ran the risk of introducing
errors in data recording and execution, so we chose a largely automated approach for
the final validation trials using the application described below. This greatly reduced
the physical and mental workload of the simulation support team and the susceptibility
to errors.

For the secondary task, 10 min after the start of each simulation run, each controller
(and additionally once in parallel with the simulation pilots) was asked to complete as
many Stroop tasks [43] as possible in the following 10 min in addition to their main task.
For this purpose, a tablet PC (6x Samsung A8) was provided to the controllers that ran
an application for executing consecutive Stroop tasks [44]. The application recorded the
execution time and duration of each task as well as its correctness. A high number of
correctly executed Stroop tasks in the application suggests an available mental capacity
that is not needed for the main task.

The atomic Stroop task is the following: when the start button is pressed, a word for a
color is displayed, but in a different color to the color that the word stands for. The task for
the user is to select the right button with the color word that matches the display color from
a set of seven buttons, all labelled with a color word in black. The order of these buttons
changes in a pseudo-random way at each repetition of the task. In Figure 9, the color word
“ORANGE” is displayed in blue, so the button to press is the one labelled “BLUE”.
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5. Validation Results
5.1. Speech Recognition and Understanding Performance

Section 5.1.1 focuses on speech recognition, and Section 5.1.2 focuses on speech under-
standing performance results.

5.1.1. Speech-to-Text Accuracy (Speech Recognition)

A first indication for the quality of the ABSR system is provided by the so-called word
error rate (WER) of the S2T component. The WER is calculated based on the Levenshtein
distance [42] between the word sequence recognized by the S2T component and the actual
spoken word sequence (gold transcription). This involves counting, in the recognized
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word sequence, how many words of the actual word sequence have been substituted (S),
deleted (D), or additionally inserted (I). All three components are then added and divided
by the number of words of the actual word sequence (N). Table 6 shows the WER of the
developed S2T component in the final validation trials based on the verbal utterances of
14 apron controllers.

Table 6. Word error rate of recognized word sequences from the S2T component.

Recognition Mode WER

Offline (PTT signal simulated) 3.1% Male: 3.3%
Female: 2.6%

Online (voice activity detection) 5.0% Male: 5.5%
Female: 3.7%

WER was evaluated for two different modes. Online recognition measures what
recognition performance the S2T component achieved during the final validation trials in
summer 2022. This means that these results contain a certain number of errors that are not
induced by the S2T component but by voice activity detection (VAD), due to the missing
PTT signal. In order to determine how large the influence of VAD is and what improvement
can be expected by accessing the PTT signal, the offline recognition after summer 2022
was used to subsequently evaluate what the system would have recognized if the audio
stream had been perfectly split by PTT. It can be seen that offline recognition again brings a
significant improvement over online recognition, with a WER of 3.1% compared to 5.0%.

It is also interesting to observe that the average WER of female apron controllers (2.6%
and 3.7%, respectively) was better than those of male apron controllers (3.3% and 5.5%,
respectively). On the other hand, out of the total 14 apron controllers, only four were
female. Performing unpaired t-tests with the 24 runs with female apron controllers versus
the 62 runs of male controllers provides very statistically significant results, with a p-value
of 0.02%.

The question of what WER is good enough for the intended purpose often arises. This
question cannot be answered in a general way, because in the end, it is irrelevant how many
words are recognized correctly. What is important is the ability of the system to extract
the meaning behind the recognized words and finally to implement it appropriately in
the application. Some errors on the word level can change the meaning of an utterance,
while others have no influence at all. Therefore, it is not possible to define a general
threshold for the WER, but a low WER allows conclusions on the quality of the implemented
ABSR system.

5.1.2. Text-to-Concept Accuracy (Speech Understanding)

The performance of speech understanding is evaluated by comparing the commands
automatically extracted by the system with the correct commands manually created and
verified by human experts (gold annotations). The evaluation is based on three metrics:
command recognition rate, command error rate, and command rejection rate. The com-
mand recognition rate is defined as the number of correctly recognized commands divided
by the total number of commands actually given. A command is considered correctly
recognized if and only if all elements of a command such as command type, callsign, value,
unit, qualifier, condition, etc., as defined in the ontology, are correctly recognized. Com-
mand error rate is the percentage of incorrectly extracted commands divided by the total
number of commands actually given. Command rejection rate is the percentage of actual
commands given that were not extracted at all or were rejected by the system for some
reason. Table 7 below shows the metrics defined above with an example. The example also
illustrates that the sum of the recognition, error, and rejection rates can exceed 100%.
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Table 7. Example for speech understanding metrics.

Actual Commands Recognized Commands Contribution to Metric

DLH695 TURN RIGHT DLH695 TURN LEFT 	
DLH695 TAXI VIA N10 N DLH695 TAXI VIA N10 N ⊕

DLH695 TAXI TO V162 	
AUA1F PUSHBACK AUA1F NO_CONCEPT #
CCA644 NO_CONCEPT CCA644 NO_CONCEPT ⊕

Recognition Rate (⊕) = 2/4 = 50% Error Rate (	) = 2/4 = 50% Rejection Rate (#) = 1/4 = 25%

In a similar manner to the extraction rates for commands, separately, the extraction
rates for callsigns are determined. Again, there is a callsign recognition rate, error rate, and
rejection rate. For each utterance, each callsign is considered only once, unless several dif-
ferent callsigns are extracted from the same utterance (“break break” utterances). Therefore,
in the above example from Table 7, three callsigns are considered. Detailed information
on the defined metrics can be found in [45]. Table 8 illustrates the performance of speech
understanding based on the above-explained metrics, i.e., it contains the number of radio
telephony utterances and commands as well as the recognition, error, and rejection rates
for full commands and callsigns.

Table 8. Recognition (RecR), error (ErrR), and rejection (RejR) rate for commands (Cmds) and callsigns
(Csgn) in [%] and absolute numbers of utterances (# Utterances) and commands (# Commands).

Recognition Mode # Utterances # Commands
Cmds [%] Csgn [%]

RecR ErrR RejR RecR ErrR RejR

Offline (PTT signal simulated) 5495 13,251 91.8 3.2 5.4 97.4 1.3 1.3

Online (voice activity detection) 5432 13,168 88.7 4.3 7.5 95.2 2.3 2.4

Offline (no callsign prediction used) 76.3 10.5 13.7 81.1 9.6 9.3

Delta to context 15.5 −7.3 −8.3 16.3 −8.3 −8.0

“Delta to context” is the difference of row 2 “Offline (PTT. . . )” and row 4 “(Offline no callsign. . . )”.

Recognition rates of 91.8% and 88.7% are obtained when speech understanding is
applied offline (simulated PTT) and online (VAD), respectively. The improvement in
the speech understanding result for offline recognition comes from the better word-level
recognition and the fact that the offline data does not include radio transmissions that were
incorrectly split by VAD, allowing for a better interpretation of the content. Similarly, the
recognition of aircraft callsigns in offline recognition is also better than in online recognition,
with recognition rates of 97.4% and 95.2%, respectively. The last two rows of Table 8 show
the influence of the predicted callsigns on the recognition performance of ABSR. With
context information available, the recognition rate increases by 15.5% overall and 16.3% on
the callsign level.

Table 9 shows the rates of offline recognition for different command types. The
table lists only the most common or important command types that are relevant to
the application.

Thus, speech understanding has error rates below 4% and recognition rates in the
range of roughly 87% to 98%, depending on the command type with the exception of
the GIVE_WAY command. The reason for the worse results of the GIVE_WAY command
extraction, marked in red in Table 9, is its very complex nature, i.e., it can be given/uttered
in many different ways, not all of which were modeled so far.
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Table 9. Recognition (RecR), error (ErrR), and rejection (RejR) rate for specific command types in [%]
and absolute number of commands (# Cmds) of that type.

Command Type # Cmds RecR ErrR RejR

TAXI VIA 2922 86.9 3.9 9.1

HOLD_SHORT 1837 89.3 0.8 9.9

TAXI TO 1406 89.0 1.1 9.9

CONTACT_FREQUENCY 1387 95.7 0.7 3.6

CONTINUE TAXI 1102 95.4 0.0 4.6

GIVE_WAY 728 69.6 10.2 20.3

CONTACT 672 98.4 0.3 1.3

PUSHBACK 663 92.3 1.2 6.5

TURN 359 89.2 3.9 6.9

HOLD_POSITION 223 93.4 0.0 6.6
Worst ErrR overall marked in red.

5.2. Interaction Count

To determine the amount of manual HMI interactions needed at the A-SMGCS with
and without ABSR support, we recorded the HMI interactions at each position and per
simulation run, counted them, and categorized them into 48 different task types, such as “edit
route”, “clear pushback”, and “select label”. Expectations were, of course, that the number
of interactions would be significantly lower when ABSR was available. However, it was
apparent from the pre-simulations that the controllers would not make all the required inputs
without ABSR support, nor would they correct every error made by the ABSR system, because
not performing an input has no direct consequences for the controller as long as the simulation
pilot still follows the voice instructions, because the pilots control the simulation.

Therefore, the numbers of the simulation pilots are more meaningful, since here, any
omitted input or correction leads to a delay or incorrect behavior in the simulator. On the
other hand, not all interactions of the simulation pilots can be replaced by the ABSR input,
because the pilot initiates the communication with the controller and needs information for
this, which is only available when selecting the aircraft symbol via a mouse click.

Therefore, even for a perfect ABSR, the total number of interactions can never be zero
and without ABSR, the number of interactions is higher for the simulation pilots, and the
reduction in interactions for the simulation pilots is also not as extreme as for the controllers.
Figure 10 shows the remaining portion of manual actions needed for the controllers and
simulation pilots when being supported by ABSR for the most frequent interactions. A
strong reduction of workload is apparent for both.
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5.3. Workload, NASA TLX

The NASA Task Load Index (TLX) has been used for decades in different variants
to assess perceived workload in six different aspects [46]. We used a simple unweighted
questionnaire procedure in which a mark between 0 (very low) and 20 (very high) is to
be entered for each aspect. “The Task”, here, means the task of the apron control in the
simulator operating the A-SMGCS.

This questionnaire was completed by the users at the controllers’ working positions
after each simulation run. The scores were aggregated by position, OD, and by use of the
ABSR (or not). The six questions are as follows:

• Mental Demand: How mentally demanding was the task?
• Physical Demand: How physically demanding was the task?
• Temporal Demand: How hurried or rushed was the pace of the task?
• Performance: How successful were you in accomplishing what you were asked to do?
• Effort: How hard did you have to work to accomplish your level of performance?
• Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

The question about the subjects’ own performance (see list above) requires a reversal
of the scale values: “how successful?” suggests a high value if the subjects were satisfied
with their performance. This is also how the controllers expressed themselves in the
feedback rounds, but this was not consistently evident in the questionnaires; in some cases,
conspicuously low values were given here, although the values for the other aspects were
also very low. Unfortunately, we have to assume that not all controllers understood this
question correctly or answered it as expected, and we therefore excluded the performance
aspect from the evaluation.

Table 10 below shows the average values by working position and overall, separately
for the baseline runs (without ABSR) and the solution runs (with ABSR). Columns “α”
show the statistical significance of a t-test.

Table 10. NASA TLX questionnaire results of the controllers on perceived workload.

West Center East All

Workload Base Sol α Base Sol α Base Sol α Base Sol α

Mental Demand [MD] 7.9 6.4 14.5% 14.4 12.4 1.1% 14.7 13.8 10.3% 12.3 10.8 1.3%

Physical Demand [PD] 7.6 3.3 0.4% 9.4 5.6 0.3% 10.6 7.9 2.5% 9.2 5.6 3 × 10−4

Temporal Demand [TD] 8.1 5.9 4.4% 12.8 10.7 2.4% 14.1 13.1 6.2% 11.7 9.9 0.3%

Effort [EF] 8.6 5.5 2.1% 12.6 10.5 1.3% 14.5 12.4 1.6% 11.9 9.5 1 × 10−3

Frustration [FR] 4.0 3.4 23.9% 6.8 3.5 1.0% 7.2 5.0 6.1% 6.0 4.0 0.2%

ALL 7.2 4.9 2.5% 11.2 8.5 0.2% 12.2 10.4 1.4% 10.2 8.0 6 × 10−4

Minimal α values, shaded in green for 0% ≤ α < 5%, in light green for 5% ≤ α < 10%, and in yellow for the
rest (|α| ≥ 10%). As the numbers show no evidence that results with ASRU support are worse, no further color
coding is needed.

In general, the workload on the working position “West” was significantly lower than
on the other two, while it was estimated to be slightly higher on East than on Center. At
OD25, the workload is slightly higher at West and at Center, while the workload for East
is estimated to be highest at OD07 (not shown in the table). On average, the workload is
slightly higher for OD07, and only with regard to the time aspect is OD25 experienced as
somewhat more stressful. Thus, although the working position makes a big difference, the
OD does not have a noticeable effect on the average values for all positions.

Especially for physical demand, the value even decreases by almost four points.
Significance tests (paired t-tests) on the data prove that the differences between with and
without ABSR are not random. On the West position, the results for mental demand, and
frustration does not decrease in a statistically significant way. The overall results with
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respect to workload reduction were very, very statistically significant. We obtained an
alpha (p-value) of 0.06%, i.e., if we would have repeated the experiments with all the
15 participants 1000 times again, only in six cases could we expect that the workload
without ABSR support is less than that with ABSR support.

5.4. Evaluation of Stroop Tests as Secondary Task

The results of the secondary task point in the expected direction: at the Center and
West positions, subjects were able to perform significantly more tasks correctly in parallel
with their work when the ABSR support was active, see Figure 11.
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From a statistical point of view, the variance at the East working position was too high
to make a reliable statement for this position. At Center and West, the figures support the
hypothesis, but strictly speaking, this statement is still outside usually required statistical
significance due to the relatively small total number of experiments. The qualitative
observations made during the simulation runs support our decision to use the application
and indicate that the secondary task used here is an objective measure of the cognitive
capacity available:

• “If the Stroop tasks are done while R/T [radio telephony] must be done, selecting the
correct button takes longer.”

• “More complicated routes increase the error rate [in Stroop tasks].”

5.5. Situational Awareness, Shape-SASHA

The questionnaire Situational Awareness for Shape (SASHA) [47] was used to assess
the controllers’ situational awareness during the simulation runs. The test persons marked
their assessment of the aspects on a Likert scale between 0 “never” and 6 “always”. The
negatively formulated statements (marked with an “*” below) have been inverted for
later evaluation, i.e., the averages are calculated as 6 minus the raw average value. The
statements in detail were as follows:

• In the previous working period(s), . . .

# I was ahead of the traffic.
# I started to focus on a single problem or a specific area of the sector.*
# There was the risk of forgetting something important [. . . ].*
# I was able to plan and to organize my work as I wanted.
# I was surprised by an event I did not expect [. . . ].*
# I had to search for an item of information.*
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The subjects filled out this questionnaire after each simulation run. After evaluation,
the situational awareness of the controllers is generally found to be good with and without
ABSR (see Table 11). The average values over all simulation runs, positions, and aspects
are above 4. The most important message is that with ABSR support, situational awareness
increases on average over all aspects and at each position.

Table 11. Results of SASHA questionnaire with and without ABSR support.

Situational Awareness without ABSR (W/C/E) with ABSR (W/C/E)

ahead of traffic 4.4 (5.2/4.0/4.0) 4.7 (5.4/4.2/4.6)

focus single problem 4.3 (4.9/3.9/4.2) 4.3 (4.2/4.3/4.5)

risk of forgetting 3.9 (4.8/3.5/3.4) 4.4 (4.9/4.1/4.3)

able to plan 4.1 (4.7/3.9/3.6) 4.6 (4.9/4.6/4.3)

surprised by event 4.5 (5.1/4.5/4.0) 4.9 (5.4/4.7/4.7)

search information 3.9 (4.1/3.8/3.9) 4.4 (4.5/4.7/4.0)

ALL 4.2 (4.8/3.9/3.8) 4.6 (4.9/4.4/4.4)

Further analysis of the values not shown in the above table reveals some differences
in situational awareness (SA) related to the working environment. The working position
area has an influence on SA, i.e., at the West position, the value was 4.8, while East (4.1)
and Center (4.2) have lower values. The OD makes a very small difference, with 4.3 for
OD07 and 4.4 for OD25, respectively. However, SA is significantly lower (one whole scale
point) at the Center position for OD25 and at the East position for OD07, regardless of the
use of ABSR. These two working positions gain half a point with ABSR support, but this is
not as clearly reflected at the West position. These results fit the NASA TLX results: where
workload is lower, situational awareness is higher.

5.6. Confidence in Automation, Shape-SATI

To elicit trust in the automatic entry of commands into the controllers’ or simulation
pilots’ HMI, we used the SHAPE Automation Trust Index questionnaire, SATI. We had
each participant complete this questionnaire once at the end of the simulation day, with the
request that they focus on the effects of the ABSR system. This allowed us to evaluate 15
questionnaires from the controllers and 6 from the pilots. The items that could be answered
on a 7-point Likert scale from 0 “never” to 6 “always” in detail were as follows:

• In the previous working period(s), I felt that . . .

# The system was useful.
# The system was reliable.
# The system worked accurately.
# The system was understandable.
# The system worked robustly (in difficult situations, with invalid inputs, etc.).
# I was confident when working with the system.

A distinction whether the ABSR system or other automation features of the not com-
pletely familiar system triggered trust or distrust could probably not be made completely
by the test persons. Hence, the results must be considered under this restriction. The
overall impression turned out to be very positive, as shown in Table 12.

The controllers consider the system almost always useful. Regarding accuracy and
robustness, the confidence is lowest but still high (>4). The simulation pilots are slightly
more skeptical, but overall trust in the system is well above average.
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Table 12. Results of SATI questionnaire.

Automation Trust Controllers (15) Simulation Pilots (6)

useful 5.1 4.6

reliable 4.5 4.2

accurate 4.3 4.2

understandable 4.9 5.3

robust 4.2 4.2

confident 4.8 4.3

ALL 4.6 4.5

5.7. Results with Respect to Safety
5.7.1. Software Failure Modes, Effects, and Criticality Analysis (SFMECA)

The risk analysis based on the SFMECA had the result that no error case would lead to
an increased or unacceptable risk, so that no classification into good and bad recognitions is
needed, as mentioned in Section 2.3, although our implementation of speech understanding
provides this information. This result was not expected. However, it can be explained as
follows: The apron control is not responsible for the runways, i.e., areas are excluded where
wrong decisions have particularly severe effects and where the possibility of detecting
errors quickly is reduced (due to higher speeds). There was also no indirect risk of causing
distractions through false alarms and thus endangering situational awareness, since there
were no automatic alarm functions available in the project (with which the controllers were
familiar). Based on the safety analysis, it was therefore possible to make the decision to
implement all commands directly in the A-SMGCS without exceptions (those that are not
identified as nonsensical based on plausibility checks).

For the most critical command “Handover”, it was decided to always offer an undo
function. A mistakenly executed handover of a flight to another working position would
cause all subsequent commands to be discarded: the aircraft would be assigned to another
working position and therefore be unavailable for incoming commands at the actual work-
ing position. However, the error is very easy to detect with the implemented visualization,
and we offered a one-click solution to undo it.

In addition to considering AI ABSR errors, this project also discussed and considered
the issues of safety when introducing automation. In addition to the direct effects of
automation errors, increased automation can affect safety in the following ways:

• Indirect impact due to automation errors (too many disruptive errors, either due to a
lack of recognition or incorrect recognition);

• Lack of visibility of the automation result (a loss of “situational awareness”);
• Lack of flexibility (no possibility of correction or override by the user and therefore a

loss of control);
• Overconfidence/complacency.

The approaches in this project for addressing these risks were the following:

1. Achieve sufficient recognition rates and sufficiently low recognition error rates to
prevent potential overload from occurring in the first place.

2. Make the results visible enough for users to retain situational awareness at all times.
3. Allow human operators to make corrections to automation errors in order to remain

in control.
4. Assessments of risk by overconfidence through safety considerations: what can

happen if automation errors are not corrected?

This was validated in multiple ways: (1) indirectly, by selecting particularly challeng-
ing simulation scenarios that go beyond the usual in terms of traffic density, by evaluating
the required number of interactions with the user interface, and by measuring cognitive
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load using secondary tasks; and (2) directly through test subjects filling out standardized
questionnaires on situational awareness and trust in automation.

5.7.2. Feedback from the Test Subjects on Safety

From simulations at the beginning of the project, in which significantly more errors
happened, and significantly fewer commands were available for automatic execution, the
following feedback was obtained:

• Since the speech recognizer still makes mistakes and you have to check if everything is correct
whenever you are spoken to, you are less free in your timing. One also expects that, e.g., the
callsign is highlighted. If that doesn’t happen, you’re wondering why it didn’t work.

The feedback on safety became gradually less negative as the project progressed, and
the number of errors decreased. At the beginning, there were definitely impairments of
a smooth workflow, because the controllers had to wait for the implementation or were
inclined to always check the correctness. When most commands worked and the error
rate dropped significantly, there were no more comments suggesting a negative impact or
reduced safety. This confirms the work on the safety of the overall validation system and
the analysis from the safety assessment.

After the simulation runs, subjects were always questioned about safety. The following
responses (translated analogously by the authors) are representative of the sentiments:

• You could always see if there were errors or not.
• The delay is fine. You can already talk to the next pilot or you get the indication during the

readback. That’s sufficient.
• The errors were very few. They couldn’t put us in critical situations.
• Here, the aircraft are controlled very directly because the simulator directly implements

commands [with voice recognition enabled] [including errors]. A pilot would not do that.
That’s why it [emerging situations] would be less critical in real life.

• If something takes too long, you leave it out.—If the pilot executes it correctly, it’s okay.—If
incorrectly detected, the worst thing that can happen is false alarms.

5.7.3. Summary of All Feedback Collected

Feedback was consistently positive toward the solution with ABSR support. The
controllers were mostly surprised that the system worked so well, even though it is still in a
research stage. It was emphasized that it made no qualitative difference to the ABSR system
(1) whether the controller spoke quickly or slowly, or (2) whether the controller strictly
adhered to International Civil Aviation Organization (ICAO) phraseology [16] in his/her
speech utterances or deviated from it to a greater or lesser extent, caused by increased
traffic density and high radio frequency use. The system was very well received because
it did not require controllers to change. The controllers could simply speak as they were
accustomed and still the correct action occurred in most cases. The controllers said that it
could leave more time to keep an eye on traffic instead of staring at the display.

It was also noted that with ABSR support, the controllers sometimes instruct different
taxi routes than when they have to input the route manually: If a route is pre-selected by
the system, then it is easier to follow it than to change it manually. But if the controllers can
simply use speech to change the route instead of having to enter it manually, then they are
more likely to change the route, e.g., to shorten the aircraft’s taxiing time.

The controllers as well as the simulation pilots indicated that the workload decreases
significantly with ABSR support. The best feedback was for the working position West.
Here, almost everything was correctly recognized for everybody. Recognition was also
good for the East and Center positions, but there were also minor misrecognitions.

There were hardly any critical voices. Rather, there were suggestions on how to make
it even better, e.g., that the recognition should be faster and could be better, so that there
would be even fewer false recognitions. The command types “Hold Abeam” and “Pushback
Abeam” were, e.g., not implemented within the resources of the STARFiSH project. Over
the days, the feedback from the controllers involved was qualitatively repetitive, and
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so it became apparent that the different controllers had the same good experiences with
the system.

5.8. Results with Respect to Validation Hypotheses

In Section 4.2.1, we formulated the Hypotheses H1 to H11. The results with respect to
validation of the hypotheses and falsification were presented in the above sections. This
subsection summarizes the results with respect to each hypothesis.

5.8.1. Hypotheses with Respect to “Number of Manual Inputs”

The results with respect to these hypotheses are presented in Section 5.2 in Figure 10.
The number of inputs from the simulation pilots (dependent variable, DV-Input-H-P-
less_input) is reduced by a factor of 2.5, and the number of manual inputs of the apron
controllers (dependent variable, DV-Input-H-C-less_input) is even reduced by a factor of
more than 6. Therefore, we mark the following two hypotheses as validated.

H1. (H-C-less_input): Automatic documentation (conditions JC and CP) reduces the total number
of manual inputs to guide taxiing traffic at the controllers’ working position compared to full manual
input (conditions NO and JP). Validated

H2. (H-P-less_input): Automatic command recognition for the simulation pilots (conditions JP and
CP) reduces the total number of manual inputs to guide the taxiing traffic of the simulation pilots
compared to full manual input (conditions NO and JC). Validated

5.8.2. Hypothesis with Respect to “Free Cognitive Resources of Apron Controller”

The results with respect to this hypothesis are presented in Section 5.4 in Figure 11.
The number of correct Stroop tasks increased for the West and Center positions and
did not decrease for the East position. Therefore, we mark the following hypothesis as
partially validated.

H3. (H-C-more_cog_res): Automatic documentation (conditions JC and CP) increases the con-
troller’s free cognitive resources compared to full manual input (conditions JP and NO).
Partially Validated

5.8.3. Hypothesis with Respect to “Apron Controller Workload Reduction”

The results with respect to this hypothesis are presented in Section 5.3 in Table 10. The
workload reduced by 2.2 scale units on the 20-unit NASA TLX scale on average. Therefore,
we mark the following hypothesis as validated.

H4. (H-C-less_workload): Automatic documentation (conditions JC and CP) reduces the workload
of the controller compared to full manual input (conditions JP and NO). Validated

5.8.4. Hypothesis with Respect to “Apron Controller’s Situational Awareness”

The results with respect to this hypothesis are presented in Section 5.5 in Table 11.
The situational awareness over all three positions and over both operating directions
increased from 4.2 to 4.6 (maximum value of 6.0). The lowest effect was measured for the
West position with an increase of 0.1 unit points. However, situational awareness was
already high without ABSR support at this position (4.8). Therefore, we mark the following
hypothesis as validated.

H5. (H-C-sit_aw_ok): Automatic documentation (conditions JC and CP) does not limit the con-
troller’s situational awareness compared to full manual input (conditions JP and NO). Validated

5.8.5. Hypotheses with Respect to “Apron Controller’s Confidence”

The results with respect to this hypothesis are presented in Section 5.6 in Table 12.
The average value for the apron controllers was 4.6 and that for simulation pilots was 4.5.
These values are above the average of 3.0. In addition, the lowest individual value for both
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(4.2) is far beyond the average of 3.0. Therefore, we mark the following hypotheses both
as validated.

H6. (H-C-conf): Controller confidence in command entry automation (conditions JC and CP) is
above average. Validated

H7. (H-P-conf): Simulation pilot’s confidence in command entry automation (conditions JP and
CP) is above average. Validated

5.8.6. Hypotheses with Respect to “Automatic Speech Understanding for
Complete Commands”

The results with respect to this hypothesis are presented in Section 5.1.2 in Table 8.
Assuming the availability of push-to-talk, we measured an average command recognition
rate of 91.2%, which is fully above the threshold of 90%. We obtained 3.2% as the command
recognition error rate, which is also better than the threshold of 5%. Therefore, we mark
the following hypotheses both as validated.

H8. (H-E-CmdRR): The command extraction rate (JC, JP, and CP) in the apron environment is
comparable to the quality already achieved in the approach domain by ABSR (command extraction
rate for simulation-relevant commands >90%). Validated

H9. (H-E-CmdER): The command extraction error rate (conditions JC, JP, and CP) in the apron
environment is comparable to the quality already achieved in the approach domain by ABSR
(command extraction error rate for simulation-relevant commands <5%). Validated

The results with respect to callsign recognition are also presented in Table 8. The
callsign recognition rate of 97.4% is better than the threshold of 97%, and the callsign
recognition error rate of 1.3% is also better than the threshold of 2%. Therefore, we mark
the following hypotheses both as validated.

H10. (H-E-CsgRR): The callsign extraction rate (conditions JC, JP, and CP) in the apron envi-
ronment is comparable to the quality already achieved in the approach domain by ABSR (>97%).
Validated

H11. (H-E-CsgER): The callsign extraction error rate (conditions JC, JP, and CP) in the apron
environment is comparable to the quality already achieved in the approach domain by ABSR (callsign
extraction error rate <2%). Validated

6. Discussion

The STARFiSH project was of course subject to some restrictions that determined what
was possible to research in the given time and budget. This section, therefore, discusses
possibilities for improvements that could be addressed in the future and highlights some
aspects that proved to be useful within this project.

The SFMECA (see Sections 2.3 and 5.7) produced no RPNs that mandated mitigation
actions. This was due to the environment in which the project was executed: Areas of
responsibility for the apron control did not include runways and no automatic alerting
functions were implemented at the baseline A-SMGCS. For an environment without these
limitations, the SFMECA is expected to produce different results and additional challenges
for usability and safety. In addition, while the SFMECA itself was chosen as a proven
instrument, there are suggestions for amendments to the methodology which could be
used in order to address its specific shortcomings [48].

The results in Sections 5.1.1 and 5.1.2 show that the use of voice activity detection
significantly degrades the overall performance. The push-to-talk signal should therefore
be used whenever possible. Especially in an operational scenario, voice activity detection
should not be considered as an alternative, since the push-to-talk signal is in use anyway, and
technical access should not be an issue. Nevertheless, in non-operational scenarios where, for
technical reasons, the push-to-talk signal might not be available, more modern approaches to
voice activity detection based on neural network architectures could be exploited [49].
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In Section 3.2.3, the rule-based algorithm for speech understanding was mentioned.
This approach, of course, offers a very precise control about what is extracted and how the
extraction itself takes place. The disadvantage of this method is, on the other hand, that
every adaptation has to be programmed manually, which can create a lot of effort. Future
projects could ease the adaptation process by fine-tuning pre-trained language models such
as BERT [50], which could then recognize the different elements of the ontology [51].

The iterative approach taken for the development of the whole system and also for the
training and improvement of the speech recognition and understanding modules proved to
be very useful throughout this project. The different prototypes made it possible to involve
the apron controller (end-users) already at an early stage of development and to incorporate
their feedback in future prototypes. That not only improved the system in itself but also
made the controllers involved and interested in the system and in what can be achieved
with such a technology. The iterative improvement of the speech recognition parts was also
useful with respect to the transcription and annotation process of the recorded data. As
the recognition performance of these components became better over the iterations, the
manual work to correct and verify transcriptions and annotations could be reduced.

One of the next steps should be to move the developed system from the simulation
into an operational environment to see how big the difference to real world operations is
and what obstacles have to be overcome. A first step could be to run the system in shadow
mode so that it does not interfere with the operating systems, but operational experts could
monitor how the system would react.

7. Conclusions

The STARFiSH project was the first to implement a speech recognition and under-
standing system for a complex apron environment at Frankfurt Airport. DLR’s ABSR
system was successfully coupled with the commercial A-SMGCS system from ATRiCS, i.e.,
a previously prototypical technology from a scientific environment was integrated into a
commercial system that is available on the market. The solution was iteratively improved
and finally tested in validation trials with 14 different apron controllers in 29 simulation
runs in the tower simulator of Fraport. A total of 43 h of validation data (radar, audio, HMI
inputs, etc.) were recorded and subsequently analyzed.

A main objective of the STARFiSH project was to prepare the usage of an artificial
intelligence-powered speech recognition and understanding system in the safety-critical en-
vironment of the ops room at a European major hub airport. The formal method SFMECA
(=Software Failure Modes, Effects, and Criticality Analysis) for risk assessment and subse-
quent identification of mitigation measures was applied with the very encouraging result
that no error case would lead to an increased or unacceptable risk. At the same time, it
could be shown that such an AI-equipped application can be operated safely in aviation
and, moreover, does not have a negative impact on the controllers’ situational awareness.

When supported by ABSR, the controllers made more than six times fewer manual
entries into the A-SMGCS. This already includes the correction of wrong or missing recogni-
tions from the speech recognition and understanding support. A recognition rate of 91.8%
on the command level was observed, i.e., the callsign, the command type, the command
values, e.g., taxi routes, and the command conditions were correctly extracted in 91.8% of
the cases.
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Appendix A

The following dependent variables of the final validation trials are considered. The
respective results of a dependent variable are each compared between the different opera-
tional conditions within a scenario.

Appendix A.1. DV-Input: Number of Manual Inputs for Control by Controllers/Simulation Pilots

The manual inputs are counted. Since the inputs are identifiable by type, certain
types are highlighted, if necessary, should it be found that some types occur particularly
frequently or infrequently. The total count is compared between simulation runs with or
without ABSR support.

These dependent variables are used to validate/falsify the following hypotheses:

• DV-Input-H-C-less_input (ABSR for the controllers reduces the number of manual
inputs).

• DV-Input-H-P-less_input (ABSR for the simulation pilots reduces the number of
manual inputs).

Appendix A.2. DV-Cog-Res: Measurement of Cognitive Resources by Secondary Task

The cognitive resources are measured by means of a secondary task, i.e., a task the
test subject (controller or simulation pilot) performs during a scenario in parallel to the
main task. This is a secondary task that the subject is only allowed to perform when no
mental resources are needed for the main task. The secondary task consists of performing
a repeated Stroop test in a web application, see Section 4.4. The number of correctly
mastered tests in a given time period is a measure of free cognitive resources. For this
purpose, the responses per item are categorized as correct/wrong, and the number per
time is plotted as a histogram and compared for simulation runs with and without ABSR
support, respectively. These dependent variables are used to validate/falsify the following
hypothesis:

• DV-Cog-Res-H-C-more_cog_res (more free cognitive resources of the controller due to
ABSR).

Appendix A.3. DV-Workload Scoring by NASA TLX

This dependent variable is used to validate/falsify the following hypothesis:

• DV-Workload-H-C-less_workload (less controller workload due to ABSR).

Appendix A.4. DV-Sit-Aw Scoring According to SHAPE-SASHA

This dependent variable is used to validate/falsify the following hypothesis:

• DV-Sit-Aw-H-C-sit_aw_ok (situational awareness of the controller).

Appendix A.5. DV-Trust: Scoring According to SHAPE-SATI

These dependent variables are used to validate/falsify the following hypotheses:

• DV-Trust-H-C-conf (automation trust of the controller).
• DV-Trust-H-P-conf (automation trust of the simulation pilot).
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Appendix A.6. DV-CmdRR: Command Extraction Rate

This dependent variable is used to validate/falsify the following hypothesis:

• DV-CmdRR-H-E-CmdRR (comparable command extraction rate as in the approach
environment).

Appendix A.7. DV-CmdER: Command Extraction Error Rate

This dependent variable is used to validate/falsify the following hypothesis:

• DV-CmdER-H-E-CmdRR (comparable command extraction error rate as in the ap-
proach environment).

Appendix A.8. DV-CsgRR: Callsign Extraction Rate

This dependent variable is used to validate/falsify the following hypothesis:

• DV-CsgRR-H-E-CsgRR (comparable callsign extraction rate as in the approach envi-
ronment).

Appendix A.9. DV-CsgER: Callsign Extraction Error Rate

This dependent variable is used to validate/falsify the following hypothesis:

• DV-CsgER-H-E-CsgER (comparable callsign extraction error rate as in the approach
environment).

Appendix B

The task of the module “Concept Interpretation” is to transfer only those commands
into the assistance system that are plausible and fit into the current traffic context. In the
following, we describe the steps already mentioned in Section 3.2.5 in more detail.

Appendix B.1. Preprocessing

The modules described in Sections 3.2.2 and 3.2.3 generate data telegrams for the
respective assigned working position. These data telegrams contain, among other things,
the extracted ATC concepts with the semantics according to the ontology for the annotation
of ATC utterances. An example of the logical content of a data telegram is presented in
Box A1.

Box A1. Logical content example of a data telegram which has to be preprocessed for the A-SMGCS.

Sender: MC East
Callsign: DLH4YE
Command: GREETING
Command: TAXI (TO) V106
Command: TAXI (VIA) L

The interpretation of such a data telegram requires several checking steps, depending
on the commands contained, before one or more inputs can be safely made to the A-SMGCS.
Basically, this step checks whether the working position assigned to the sender is authorized
to make entries for the callsign or whether another working position is responsible for the
aircraft of this callsign.

Appendix B.2. Highlighting the Aircraft Symbol on the Basis of the Recognized Callsign

If the basic check of this preprocessing is successful, the corresponding aircraft symbol
is highlighted at the assigned working position to inform the human operator for which
flight a command has been recognized.

Appendix B.3. Checking and Interpretation

Depending on the command type, the following checks and computation steps are
performed depending on the characteristics of the command received.
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Appendix B.3.1. Triggering Multiple Actions Based on a Single Command

Some commands require that multiple actions are triggered by the same command in
the correct order. For example, a TAXI command should trigger a TAXI clearance in the
system and create a taxi route. It may also be necessary to modify an existing route and
cancel stop instructions in certain situations.

Appendix B.3.2. Discarding Commands Incompatible with the Traffic Situation

It may happen that a command is received that does not make sense in the current
traffic situation, e.g., a TAXI command destination for an inbound flight that contains a
runway as the destination of the route. If possible, such cases are detected by checking a set
of rules. The command is then ignored, and a message is displayed to the human operator.
The cause of an incompatible command cannot be determined here. It could be an error of
the controller, or it could originate in the ABSR system.

Appendix B.3.3. Correctly Interpret Context-Dependent Commands

Some commands must be interpreted differently depending on the flight plan data or
other circumstances identified by the A-SMGCS. For example, if a special routing procedure
is set for a flight in the system depending on certain conditions in the database, the system
must assign a different route than in the normal case. The same utterance by the controller,
therefore, leads to different results in the system depending on the data situation.

Appendix B.3.4. Completing Incomplete Commands from Current Traffic Situation

There are commands that do not contain all the necessary information to be able
to implement them directly. For example, the command “GIVE_WAY . . . A320 RIGHT"
needs further analysis, assuming that there is more than one A320 aircraft moving at the
airport. The transcription part “from the right” can be ambiguous, thus it needs to be
determined algorithmically which aircraft is probably correct from the controller’s and
pilot’s perspective. In such cases, configuration tables, algorithms, state machines, and
rules stored in the code are used to generate the correct command appropriate to the
traffic situation.

Appendix B.3.5. Conversion of Commands

Once a command has been established by the previous checks, it can be implemented.
This means that the command is entered into the A-SMGCS, i.e., the internal system state is
changed to reflect the command. For the controller, this results in visual feedback on the
working position. For example, the callsign that the controller addressed is highlighted
near the corresponding aircraft symbol on the ground situation display. A change in the
route is illustrated by colored lines, and changes in clearances are indicated on the label of
the corresponding flight.

Appendix B.3.6. Dealing with Detected Errors

If a command does not pass one of the plausibility checks, an error message is dis-
played. This gives the human operator the option to check the situation and either ignore it
or correct it.

Appendix B.3.7. Undetected Errors and Identification of Error Sources

It is not possible to identify for each command whether it is operationally correct. It is
also not possible to determine whether a detected error originates from the ABSR system or
was made by the controller. The controller, as the user of the system, must therefore observe
the output of the A-SMGCS and anticipate, detect, and correct error situations not detected
by the system. In the training of the controllers, this behavior is trained specifically and
repeatedly, since errors of the human actors involved (e.g., the pilots) and the electronic
systems must always be expected. It is always necessary to make a trade-off between the
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recognition rate and the recognition error rate. For example, a 0% error rate can be achieved
simply by discarding every recognized command.

References
1. Kleinert, M.; Shetty, S.; Helmke, H.; Ohneiser, O.; Wiese, H.; Maier, M.; Schacht, S.; Nigmatulina, I.; Sarfjoo, S.S.; Motlicek, P.

Apron Controller Support by Integration of Automatic Speech Recognition with an Advanced Surface Movement Guidance and
Control System. In Proceedings of the 12th SESAR Innovation Days, Budapest, Hungary, 5–8 December 2022.

2. International Civil Aviation Organization (ICAO). Advanced Surface Movement Control and Guidance Systems (ASMGCS) Manual,
Doc 9830 AN/452, 1st ed.; International Civil Aviation Organization (ICAO): Montréal, QC, Canada, 2004.

3. Helmke, H.; Ohneiser, O.; Mühlhausen, T.; Wies, M. Reducing Controller Workload with Automatic Speech Recognition. In
Proceedings of the 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, USA, 25–29 September 2016.

4. Helmke, H.; Ohneiser, O.; Buxbaum, J.; Kern, C. Increasing ATM Efficiency with Assistant Based Speech Recognition. In
Proceedings of the 12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017), Seattle, WA, USA,
26–30 June 2017.

5. European Commission. L 36/10; Commission Implementing Regulation (EU) 2021/116 of 1 February 2021 on the Establishment
of the Common Project One Supporting the Implementation of the European Air Traffic Management Master Plan Provided for in
Regulation (EC) No 550/2004 of the European Parliament and of the Council, Amending Commission Implementing Regulation
(EU) No 409/2013 and Repealing Commission Implementing Regulation (EU) No 716/2014. Official Journal of the European
Union: Luxembourg, 1 February 2021.

6. Helmke, H.; Rataj, J.; Mühlhausen, T.; Ohneiser, O.; Ehr, H.; Kleinert, M.; Oualil, Y.; Schulder, M. Assistant-Based Speech
Recognition for ATM Applications. In Proceedings of the 11th USA/Europe Air Traffic Management Research and Development
Seminar (ATM2015), Lisbon, Portugal, 23–26 June 2015.

7. Davis, K.H.; Biddulph, R.; Balashek, S. Automatic recognition of spoken digits. J. Acoust. Soc. Am. 1952, 24, 637–642. [CrossRef]
8. Juang, B.H.; Rabiner, L.R. Automatic speech recognition–a brief history of the technology development. Ga. Inst. Technol. Atlanta

Rutgers Univ. Univ. Calif. St. Barbar. 2005, 1, 67.
9. Connolly, D.W. Voice Data Entry in Air Traffic Control; Report N93-72621; National Aviation Facilities Experimental Center: Atlantic

City, NJ, USA, 1977.
10. Hamel, C.; Kotick, D.; Layton, M. Microcomputer System Integration for Air Control Training; Special Report SR89-01; Naval Training

Systems Center: Orlando, FL, USA, 1989.
11. FAA. National Aviation Research Plan (NARP); FAA: Washington, DC, USA, 2012.
12. Updegrove, J.A.; Jafer, S. Optimization of Air Traffic Control Training at the Federal Aviation Administration Academy. Aerospace

2017, 4, 50. [CrossRef]
13. Schäfer, D. Context-Sensitive Speech Recognition in the Air Traffic Control Simulation. Eurocontrol EEC Note No. 02/2001. Ph.D.

Thesis, University of Armed Forces, Munich, Germany, 2001.
14. Tarakan, R.; Baldwin, K.; Rozen, R. An automated simulation pilot capability to support advanced air traffic controller

training. In Proceedings of the 26th Congress of the International Council of the Aeronautical Sciences, Anchorage, Alaska,
14–19 September 2008.

15. Ciupka, S. Siris big sister captures DFS (original German title: Siris große Schwester erobert die DFS). Transmission 2012, 1.
16. Doc 4444 ATM/501; ATM (Air Traffic Management): Procedures for Air Navigation Services. International Civil Aviation

Organization (ICAO): Montréal, QC, Canada, 2007.
17. Cordero, J.M.; Dorado, M.; de Pablo, J.M. Automated speech recognition in ATC environment. In Proceedings of the 2nd

International Conference on Application and Theory of Automation in Command and Control Systems (ATACCS’12), London,
UK, 29–31 May 2012; IRIT Press: Toulouse, France, 2012; pp. 46–53.

18. Cordero, J.M.; Rodríguez, N.; de Pablo, J.M.; Dorado, M. Automated Speech Recognition in Controller Communications applied
to Workload Measurement. In Proceedings of the 3rd SESAR Innovation Days, Stockholm, Sweden, 26–28 November 2013.

19. Nguyen, V.N.; Holone, H. N-best list re-ranking using syntactic score: A solution for improving speech recognition accuracy
in Air Traffic Control. In Proceedings of the 2016 16th International Conference on Control, Automation and Systems (ICCAS),
Gyeongju, Republic of Korea, 16–19 October 2016; pp. 1309–1314.

20. Nguyen, V.N.; Holone, H. N-best list re-ranking using syntactic relatedness and syntactic score: An approach for improving speech
recognition accuracy in Air Traffic Control. In Proceedings of the 2016 16th International Conference on Control, Automation and
Systems (ICCAS 2016), Gyeongju, Republic of Korea, 16–19 October 2016; pp. 1315–1319.

21. Helmke, H.; Kleinert, M.; Shetty, S.; Ohneiser, O.; Ehr, H.; Arilíusson, H.; Simiganoschi, T.S.; Prasad, A.; Motlicek, P.; Veselý, K.;
et al. Readback Error Detection by Automatic Speech Recognition to Increase ATM Safety. In Proceedings of the 14th USA/Europe
Air Traffic Management Research and Development Seminar (ATM2021), Virtual, 20–24 September 2021.

22. Ohneiser, O.; Helmke, H.; Shetty, S.; Kleinert, M.; Ehr, H.; Murauskas, Š.; Pagirys, T.; Balogh, G.; Tønnesen, A.; Kis-Pál, G.; et al.
Understanding Tower Controller Communication for Support in Air Traffic Control Displays. In Proceedings of the 12th SESAR
Innovation Days, Budapest, Hungary, 5–8 December 2022.

129



Aerospace 2023, 10, 596

23. Helmke, H.; Kleinert, M.; Ahrenhold, N.; Ehr, H.; Mühlhausen, T.; Ohneiser, O.; Motlicek, P.; Prasad, A.; Zuluaga-Gomez, J.
Automatic Speech Recognition and Understanding for Radar Label Maintenance Support Increases Safety and Reduces Air Traffic
Controllers’ Workload. In Proceedings of the 15th USA/Europe Air Traffic Management Research and Development Seminar
(ATM2023), Savannah, GA, USA, 5–9 June 2023.

24. García, R.; Albarrán, J.; Fabio, A.; Celorrio, F.; de Oliveira, C.P.; Bárcena, C. Automatic Flight Callsign Identification on a Controller
Working Position: Real-Time Simulation and Analysis of Operational Recordings. Aerospace 2023, 10, 433. [CrossRef]

25. Chen, S.; Kopald, H.D.; Elessawy, A.; Levonian, Z.; Tarakan, R.M. Speech inputs to surface safety logic systems. In Proceedings of
the IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), Prague, Czech Republic, 13–17 September 2015.

26. Chen, S.; Kopald, H.D.; Chong, R.; Wei, Y.; Levonian, Z. Read back error detection using automatic speech recognition. In
Proceedings of the 12th USA/Europe Air Traffic Management Research and Development Seminar (ATM2017), Seattle, WA, USA,
26–30 June 2017.
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Abstract: Assistant Based Speech Recognition (ABSR) systems for air traffic control radiotelephony
communication have shown their potential to reduce air traffic controllers’ (ATCos) workload. Related
research activities mainly focused on utterances for approach and en-route traffic. This is one of the
first investigations of how ABSR could support ATCos in a tower environment. Ten ATCos from
Lithuania and Austria participated in a human-in-the-loop simulation to validate ABSR support
within a prototypic multiple remote tower controller working position. The ABSR supports ATCos
by (1) highlighting recognized callsigns, (2) inputting recognized commands from ATCo utterances
in electronic flight strips, (3) offering correction of ABSR output, (4) automatically accepting ABSR
output, and (5) feeding the digital air traffic control system. This paper assesses human factors
such as workload, situation awareness, and usability when ATCos are supported by ABSR. Those
assessments result from a system with a relevant command recognition rate of 82.9% and a callsign
recognition rate of 94.2%. Workload reductions and usability improvement with p-values below
0.25 are obtained for the case when the ABSR system is compared to the baseline situation without
ABSR support. This motivates the technology to be brought to a higher technology readiness level,
which is also confirmed by subjective feedback from questionnaires and objective measurement of
workload reduction based on a performed secondary task.

Keywords: air traffic controller; multiple remote tower; assistant-based speech recognition; automatic
speech recognition and understanding; electronic flight strips

1. Introduction

Speech recognition and speech understanding have found their way into use in
daily life. While speech recognition has become quite robust with growing amounts of
data, speech understanding remains a challenge given the complexity of verbal utterances’
semantics. However, high accuracy in speech understanding is needed for human operators
that supervise safety-critical processes, such as in aviation. Only then, users of speech
recognition and understanding systems such as controllers will accept them and can benefit
from their support, e.g., through workload reduction. Nowadays, tower controllers are
burdened with manually maintaining flight strips, even if the content that needs to be

132



Aerospace 2023, 10, 560

entered in such flight strips is also communicated verbally in air traffic control radio
telephony. This article presents one of the first prototypes of a speech recognition and
understanding system to support ATCos in the tower environment in maintaining digital
flight strips—in our case, even in a simulated multiple remote tower environment.

Our conducted validation study with ten air traffic controllers (1) quantifies any
productivity enhancements in terms of mental workload, situation awareness, satisfaction,
acceptance, trust, and usability through the advanced support functionalities in the digital
system with automatic flight strip maintenance and highlighting features (independent
variable); (2) quantifies the quality of speech-to-text and text-to-concept functionality; and
(3) gathers feedback on the prototypes’ functionality and visualization.

1.1. Related Work
1.1.1. Automatic Speech Recognition and Understanding in Air Traffic Management

During the last decades, a row of prototypes for speech recognition and understand-
ing [1] in the air traffic management (ATM) domain has been developed. Early prototypes
intended to support air traffic control (ATC) training and to reduce the number of required
simulation pilots [2,3]. ATC events have been recognized from utterances to estimate
controller workload [4,5]. The integration of contextual knowledge from an electronic assis-
tant system for the speech recognition and understanding process [6] reduced recognition
error rates [7]. These so-called assistant-based speech recognition (ABSR) systems initially
focused on the approach environment [8]. For interoperability and comparability, rules
for transcription (speech-to-text) and annotation (text-to-concepts)—so-called ontologies—
have been defined and agreed upon between the major European ATM stakeholders [9].
Due to these rules, ATC utterances always comprise a callsign and at least one command
that can consist of a type, unit, qualifier, and conditions. Later, ABSR systems were en-
hanced and enrolled on the en-route [10], apron [11,12], and tower environment [13]. This
included the prediction and extraction of ATC commands [14]. Further research prototypes
enhanced the ontologies, worked on speech recordings and radar data from real operations
rooms, especially, but not limited to, recognizing callsigns [15–17], pre-filled aircraft radar
labels that reduced the workload of ATCos [18,19], and implemented automatic readback
error detection [10,20]. However, there was no validation of a sophisticated ABSR system’s
support for tower controllers, especially in a multiple remote tower setup using such a
system in a high-fidelity laboratory environment.

1.1.2. Multiple Remote Air Traffic Control Tower and Human Operator Performance

The history of laboratory remote tower working positions started over two decades
ago [21]. Recent research focused on human performance in multiple remote tower en-
vironments, i.e., where an ATCo is responsible for more than one remote airport at the
same time. This started with analyzing eye-tracking data to characterize tower controllers’
visual attention [22]. The research went on to investigate the changes in monitoring tasks
and drafting multimodal interaction to support human operators at the controller working
position (CWP) [23]. The latest research concentrated on workload assessment [24], opera-
tional feasibility and safety [25], as well as a supervisor position [26]. With fostering the
technology maturity, questions regarding standardization with the European Organization
for Civil Aviation Equipment (EUROCAE) and the European Union Aviation Safety Agency
(EASA) guidelines have been developed [21]. Furthermore, the certification process for
multiple remote tower operations has been sketched [27].

In the multiple remote tower environment, the human ATCo remains a central mean
for the overall performance, with or without ABSR support. Related work on human
performance assessment with standardized questionnaires is explained together with their
results in the subsections of the result Section 3.

133



Aerospace 2023, 10, 560

1.2. Structure of the Article

Section 2 describes the setup for the validation of ABSR support for ATCos and the
conduction of this study. Section 3 presents the study results for the two aspects “Appli-
cation of ABSR” and “ABSR in an ATM environment”, i.e., results on speech recognition
performance (Section 3.1) and speech understanding performance (Section 3.2) as well as on
human factors such as mental workload, situation awareness, satisfaction, acceptance, trust,
and usability (Sections 3.3–3.10), and ends with general feedback from ATCos (Section 3.11).
Section 4 discusses the major study results for the fast readers who just quickly scanned
Sections 2 and 3. For the very fast overview reader, Section 5 concludes and gives an
outlook on future work. A list of abbreviations is provided before the Appendix. For
more details and to follow some of the calculations, Appendix A lists results on speech-to-
text performance, Appendix B lists results on text-to-concept performance, Appendix C
lists the questionnaire statements of this study, and Appendix D details some validation
setup views.

2. Materials and Methods

This section describes the hardware and software setup, as well as the methodology
for the conduction of a human-in-the-loop simulation study to validate the benefits of
an implemented ABSR prototype that was integrated with a prototypic electronic flight
strip system for ATCos working within a simulated multiple remote tower environment.
The technological validation exercise “006” was part of SESAR2020’s wave 2 project PJ.05,
“Digital Tower Technologies (DTT)” that received funding from the SESAR Joint Under-
taking under the European Union’s Horizon 2020 research and innovation program under
grant agreement No 874470. More specifically, the exercise was conducted within solution
97, “HMI Interaction modes for Airport Tower,” with its “Automatic Speech Recognition
(ASR)” activity for “Improving controller productivity by ASR at the TWR CWP”.

2.1. Hardware Setup of the Validation Study

Figure 1 shows the hardware setup of a prototypic CWP for a multiple remote tower
environment in DLR’s TowerLab [28]. Three horizontal rows of monitors (top of Figure 1)
visualize the artificial outside view for the three configured airports. The airport layout is
generic, but the three airports are named Vilnius, Kaunas, and Palanga.
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Figure 1. Multiple remote tower environments with a row of monitors per each of the three airports
under ATCo control, three radar screens, and the electronic flight strip system that is supported
by the output of an assistant-based speech recognition system. The position for Vilnius is always
top/left, Kaunas is middle, and Palanga is bottom/right.
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The three monitors below on the desk (see Figure 1) depict the air traffic in the airport’s
vicinity. The touch display at the middle of the desk (see Figure 1) presents the electronic
flight strips per airport per column. The ATCo wears a headset with speakers and a
microphone that is triggered via a push-to-talk button at the headset’s cable. The paper
sheets on the left of the desk (see Figure 1) contained the airport layout, aircraft callsigns,
and a legend for the symbols of the electronic flight strip system.

2.2. Software Setup and Simulation Environment of the Validation Study

All used software and displays are prototypic DLR developments. They consist of
the most common elements that the usual controller working positions of European air
navigation service providers offer. Thus, a wide range of ATCos from many different
countries can use the systems of the validation study even if the details differ compared to
their “usual” systems in daily-life operations. The aircraft and ground vehicle movements
relevant to the tower and ground control were simultaneously simulated in three remote
Lithuanian airports, i.e., Vilnius, Kaunas, and Palanga.

2.2.1. Outside View for Supervision of Movements on Ground and above the Airfield

The artificial outside view, such as out of a physical tower for those three airports,
comprises the runway, taxiways, stands, and some environments, such as landscape and
buildings, as shown in Figure 1. On the left and right side of each monitor row, there was a
compass rose with additional information relevant to aircraft takeoff and landing (more
details in Appendix D). If the validation condition “with ABSR support” was active, the
ABSR output was also shown in the ATCo outside view.

2.2.2. Radar Displays to Monitor Air Traffic Close to the Airfield

A radar display for each of the three airports (see Figure 1 middle part) visualized the
airspace structure with waypoints and the air traffic in the airport’s vicinity. Each aircraft
had a radar label displaying the aircraft callsign, weight category, current altitude, rate of
descent/climb, speed, heading, and aircraft type. The biggest airport (Vilnius) also had a
ground radar display showing the runway, taxiways, stands, and aircraft information, i.e.,
current and latest positions, aircraft callsign, relevant runway or stand, speed, and aircraft
type, as well as a color indicating if the flight is an arrival or departure.

2.2.3. Electronic Flight Strip System (EFS)

The electronic flight strip system on the touch display consisted of one column per
airport (see Figure 2). The column heads presented the airport’s ICAO code, runways,
automatic terminal information service (ATIS) letter, and radio frequency. Each of the three
columns, in turn, comprised four different bays—air, runway, ground, and stand—in order
to enable managing the flight progress in a procedural way.

Each flight strip (see zoomed white box in Figure 2) offered the option for hand written
notes (pen symbol in upper left area), and showed aircraft callsign (BRU835), ICAO weight
category (M), runway (34), stand (M1), estimated time of arrival/departure (08:39), aircraft
type (A320), flight rules (“I” or “V” for instrument/visual flight rules), origin/destination
airport (EDDK), standard instrument departure (such as BELED3D for aircraft GAF612 on
the lower right blue flight strip), and squawk (3511).

The EFS for the ATCos further had a number of flight status icons on the right side
(see Figure 2). The flight status icons depended on the flight intentions, i.e., blue departure
flight strips/purple arrival flight strips, and on the progress, i.e., in which bay the flight
strips currently are. Each flight status icon could be toggled, i.e., activated when a status
change was initiated or deactivated, e.g., in case of activating by accident. The different
flight status icons are shown in Figure 3. If they were activated through the tap of an
electronic pen, they turned into a light green color in the electronic flight strip.
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The electronic flight strips changed their bays with further progress of the flight status
when arriving or departing, e.g., after setting the status “LINEUP,” the flight strip moved
from the ground bay to the runway bay.

2.2.4. Assistant-Based Speech Recognition and Understanding Prototype

The core development for the validation study was a prototypic system for speech
recognition and understanding in a multiple remote tower environment. This ABSR system
is based on a number of models based on deep neural networks trained by machine learning
methods, respectively. The two main steps are (1) speech recognition, i.e., automatic speech-
to-text transcription from tower controller audio input, and (2) speech understanding, i.e.,
automatic semantic text-to-concept annotations from the transcription input (see Figure 4).
The speech recognition and understanding models were trained on in-domain and out-of-
domain data, specifically 200 h from seven different datasets and 4.5 h (recorded in the later
study environment) of manually transcribed speech data, as well as 400 h of untranscribed
data from LiveATC (Homepage: https://www.liveatc.net/ (accessed on 4 April 2023)) [30].
Further references on the development of the speech recognition engine with artificial
intelligence techniques can be found in [30].
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Both speech-to-text and text-to-concepts benefit from the use of contextual data, i.e.,
they consider radar data and flight plan data. The callsign prediction model is used to
forecast aircraft callsigns for the next ATCo utterances, i.e., it predicts only those aircraft
callsigns which are in the current area of responsibility of the ATCo. Those forecasted
callsigns support the speech recognition engine in recognizing the correct word sequences
and the speech understanding module in extracting the correct callsigns, especially in cases
when not all words of the callsign are correctly recognized.

The command extraction model in the speech understanding module analyses the
automatically transcribed ATCo utterances and extracts meaningful content, i.e., ATC
concepts such as commands with callsigns, command types, values, units, etc., conform
to the defined ontology. Two example transcriptions with their example annotations shall
illustrate this:

• wizz air two echo bravo good morning vilnius tower startup and pushback approved cleared to
sofia via erlos one delta departure route seven thousand feet squawk two one seven seven QNH
one zero one four

WZZ2EB GREETING
WZZ2EB STATION VILNIUS_TOWER
WZZ2EB STARTUP
WZZ2EB PUSHBACK
WZZ2EB CLEARED TO LBSF
WZZ2EB CLEARED VIA ERLOS_1D
WZZ2EB ALTITUDE 7000 ft
WZZ2EB SQUAWK 2177
WZZ2EB INFORMATION QNH 1014
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• hotel tango uniform when you are ready taxi to holding point runway three one correction one
three right via [hes] golf vilnius

HBATU CORRECTION
HBATU TAXI TO HP_13R WHEN READY
HBATU TAXI VIA G C WHEN READY
The recognized ATC concepts, i.e., the annotations, are then used for highlighting

purposes or supporting manual input in electronic ATC systems.

2.2.5. Visualization of ABSR Output on EFS and Outside View

The ABSR output was visible through different highlighting mechanisms in the elec-
tronic flight strips if the validation condition “with ABSR support” was active. If a callsign
was recognized [31], the callsign was highlighted by displaying a rectangle in inverted
colors for ten seconds at the callsign field of the flight strip (see “DLH4TN” in Figure 5).
The callsign was highlighted immediately after being recognized and extracted even before
the ATCo finished the utterance by releasing the push-to-talk button.
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Figure 5. Prototypic electronic flight strips in the ground bay with a highlighted callsign as recognized
from an ATCo utterance (DLH4TN), dark green automatically highlighted status icons for DLH4TN
(STARTUP, PUSHBACK, TAXI), and five light green highlighted status icons of three other flights
after being automatically accepted from the system or manually entered by the ATCo.

If one or more ATC concepts, such as commands and optionally command values, have
been recognized, there was a dark green highlighting to support the ATCo in maintaining
flight strips. This means the flight status icons on the right side of a flight strip or text values
on the left side of a flight strip have been highlighted for ten seconds (see highlighted status
icons for STARTUP, PUSHBACK, and TAXI of DLH4TN in Figure 5).

If the flight status icons in dark green mode remained unchanged by the ATCo for
ten seconds, they were automatically accepted and turned into light green as with manual
activation. In the case of a recognized HOLD_SHORT of runway command, the runway
name was highlighted with color inversion for ten seconds as well.

2.3. ATCo Tasks in the Different Validation Conditions

Many of the tasks that ATCos needed to perform during the real-time human-in-the-
loop validation study were identical under different validation conditions. Two conditions
have been analyzed in the simulated multiple remote tower environment: baseline, i.e.,
without ABSR support and solution, i.e., with ABSR support. Section 2.3.1 describes the
ATCo tasks in the baseline condition; Section 2.3.2 explains the changes induced for the
ATCo when working in the solution condition.

2.3.1. ATCo Primary Tasks in Baseline Condition without ABSR Support

During the simulation runs, ATCos primarily needed to control the relevant traffic at
three remote airports (tower and ground), with the above-described hardware and software
setup consisting of an outside view, radar displays, and the electronic flight strip system.
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Hence, they mainly gave ATC clearances, allowed for startup and pushback, instructed taxi,
lineup/vacate and takeoff/landing/touch-and-go clearances for the single runway in use
at each airport, as well as approved to enter/leave the control zone and to contact adjacent
sectors. They also had to handle special situations on the ground with aircraft and ground
vehicles being involved, such as a bird strike following a runway check and an emergency
landing with the disembarkation of a sick passenger. The ATCos instructed all commands
to the relevant traffic verbally in the English language via an emulated radio system.

Three simulation pilots (one for each airport) in another room communicated with
the ATCo to run air and ground traffic with the support of a simulation pilot interface (see
Appendix D). The ATCos were instructed to speak as usual at their working position. This
also implies that some ATCos stick closer to the ICAO phraseology than others. The only
continuous additional content for each ATCo utterance was the name of the station the
ATCos are representing with the current utterance, i.e., “vilnius/kaunas/palanga tower,”
in order to fulfill safety requirements of the multiple remote tower concept.

The ATCos were asked to enter the semantic content of all utterances in terms of
changed flight status into the electronic flight strip system with an electronic touch pen.
Thus, they had to touch the flight status icon PUSHBACK in case they verbally instructed a
pushback clearance or TAXI and the name of the taxiway if there were multiple options in
case they issued to taxi via a certain taxiway (see Figure 6).
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Figure 6. Prototypic electronic flight strips (blue departures; violet arrivals) in different bays (air,
runway, ground, stand) with relevant information on the left (estimated time, callsign, aircraft type
and weight category, flight rules, runway, destination airport, stand, departure route, squawk) and
status icons on the right (e.g., CLEARED TOUCH_GO in green, ENTER_CTR, etc.).

The ontology defines 80 different command types as relevant for tower ATCos if they
also include the role of ground control. All of these command types have been implemented
within our command extraction algorithm.

The airport topologies were rather simple, i.e., the two smaller airports (Kaunas,
Palanga) had just one taxiway each from the apron to the lineup. They vacated the single
runway, and only the biggest airport (Vilnius) had two taxiway alternatives each for lining
up and vacating the single runway. No runway change occurred during the simulation time.
The weather conditions at all three airports remained visual meteorological conditions in
the daytime throughout the simulation.
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The relevant traffic in the two different one-hour simulation scenarios comprised
twelve flights in Vilnius (plus two ground vehicles), six flights in Kaunas (plus one ground
vehicle), and five flights in Palanga—at the latter airport, including training flights with
multiple approaches—so 23 flights plus three ground vehicles (the ground vehicles make
11.5% of total relevant traffic) in total. For later evaluation, the results refer to all 26 traffic
vehicles (flights plus ground vehicles) as ATC communication took place between ATCos
and pilots or ground vehicle drivers, respectively. The callsigns and timing of appearance
of the flights in these two scenarios were slightly different in order to reduce learning
effects.

2.3.2. ATCo Tasks in Solution Condition with ABSR Support

In the solution scenario, ATCos had the same hardware setup as in the baseline
scenario. The only difference was the support of the ABSR system. ATCos could majorly
resign from using the electronic pen to maintain flight strips and benefit from automatic
maintenance through the ABSR system, i.e., the ABSR output was used to highlight the
flight status icons and callsigns in electronic flight strips automatically (see lower zoomed
white box in Figure 7). The ATCos only needed to check the automatically highlighted
output, i.e., representing issued commands and thus changes in the aircraft flight status,
and correct if needed. A video about the simulation environment in the solution runs
can be downloaded from https://www.youtube.com/watch?v=Y76kQmo_ANU&cbrd=1
(accessed on 4 April 2023). The ABSR output was only shown to the ATCos in solution
scenarios. However, recording of verbal utterances, automatic transcription and automatic
annotation was also performed in the background in baseline runs. The flow of using
speech recognition and understanding output in the flight strips can be traced in Figure 7.
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The complete transcription of words (first line) and the relevant annotation of com-
mands in the agreed ontology format (second line) have been displayed in the outside view
of the human-machine interface as shown in Figure 7 (zoomed white box on the upper area
of the figure) if the validation condition “with ABSR support” was active.

2.4. Questionnaires and Further Tasks during and after Simulation Runs

Every five minutes, the ATCos were requested to rate their workload on a displayed
graphical interface for an instantaneous self-assessment of workload (ISA) scale [32]. This
interface offered values from 1 (low workload) to 5 (high workload) and appeared in the
EFS system (see Figure 8).
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2.4.1. ATCo Secondary Tasks during Simulation Runs

Furthermore, the ATCos were asked to perform a secondary task next to their primary
ATC task. After 10 and 40 min in the scenario, ATCos were requested to sort a deck of
48 cards and name one to four randomly missing cards (see Figure 9). This sorting of cards
was repeated three times each or a maximum of 15 min (after 10 min) or 13 min (after
40 min), respectively. This secondary task is aimed to give a more objective impression
about workload when comparing the time needed to sort and identify missing cards
between baseline and solution scenarios. It is assumed that ATCos have more free cognitive
capacity (less workload) if they can sort the cards quicker in one of the simulation conditions.
The points in time (after 10 and 40 min) have been chosen as the ATCo workload should
have been slightly increased due to the traffic situation at that time. The need to respond to
ISA and to perform the card sorting remained identical in baseline and solution runs.
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2.4.2. ATCo Post-Run Questionnaires after Simulation Runs

The post-run questionnaires needed to be filled by ATCos twice on each validation
day, i.e., after each of the two simulation runs with the two different conditions. The
well-established questionnaires cover the most important factors of air traffic controller
work, such as situation awareness, workload, and trust [33] and are listed below:

• NASA-TLX (National Aeronautics and Space Administration Task Load Index) [34,35];
• Bedford Workload Scale [36];
• Three SHAPE questionnaires (Solutions for Human Automation Partnerships in Euro-

pean ATM) [37]:

# AIM-s (Assessing the Impact on Mental Workload);
# SASHA (Situation Awareness for SHAPE) ATCo;
# SATI (SHAPE Automation Trust Index);

• CARS (Controller Acceptance Rating Scale) [38];
• SUS (System Usability Scale) [39,40].

2.4.3. Statistical Analysis Approach

When reporting the results of data that has been measured for baseline and solution
runs, there will also be a statistical significance analysis, e.g., of all the above-mentioned
questionnaires. Usually, there is a learning effect if ATCos perform multiple simulation
runs in a row, i.e., they will perform better in the later runs, because they are used to the
overall environment. Hence, better performance cannot simply be assigned to possibly
different simulation run conditions such as baseline or solution. The sequence of baseline
and solution runs is also an independent variable.

Therefore, two measures have been taken to compensate for the sequence effects as
much as possible. First, the order of simulation runs alternate, i.e., half of ATCos start
with a baseline run and end with a solution run and vice versa for the other half. The
performance usually is, of course, better in the later runs, but the effect on baseline and
solution runs should average out. Nevertheless, the standard deviations will be higher
than they would be without sequence effects. Hence, secondly, the sequence effects will
be compensated by considering the performance difference between the two runs. This
sequence effect compensation technique (SECT) is described in more detail in [41]. An
example shall illustrate the application of SECT. If any performance in all first runs of
ATCos is 50 s and in all second runs 30 s, i.e., 20 s better, the performance difference is
calculated as 50–30 = 20. Half of this difference (20/2), i.e., 10 s, is subtracted from each
result of a first run and half of the difference is added to each result of a second run.
Afterwards, the averages per run are the same. Furthermore, the averages of baseline and
solution keep the same. We had exactly half of the ATCos having a baseline run and a
solution run as the first run, respectively. However, the standard deviation will decrease,
i.e., statistical significance will increase. This was already shown for earlier project result
analyses such as of AcListant®-Strips when analyzing workload benefits [18].

Unpaired t-Tests can only reject hypotheses with some probability α. Therefore,
the so-called null hypothesis H0 is usually the opposite of the effect to be validated,
e.g., “ABSR support does not reduce workload as measured with a secondary task”. The test
value T is calculated as the product of (1) the difference between the mean value of the
performance measurement and µ0, which is set to zero, and (2) the square root of the
number of performance measurements, i.e., ten study subjects, divided by the standard
deviation of the performance measurement. If the measurement values follow a Normal
Gaussian distribution, the value T obeys a t distribution with n-1 degrees of freedom.
Therefore, the resulting value T is compared with the value of the inverse t-distribution
at the position tn-1,1-α with n-1 degrees of freedom. If the calculated value T is bigger
than the tn-1,1-α threshold, we can reject the null hypothesis with probability α. As this
falsifies the null hypotheses, we could assume that “ABSR support does reduce workload
as measured with a secondary task.” Additionally, the minimum α will be calculated, i.e.,
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so that the value T threshold is still exceeded. These calculations will be performed on all
single rated statements and answered questions, respectively, as well as for the group of
statements/questions that belong together in a single questionnaire, e.g., the aggregating
of the six items of NASA-TLX.

2.4.4. ATCo Post-Validation Overall Questionnaire

The post-validation questionnaire requested to be filled by ATCos only once after
finishing all simulation runs, i.e., there is an overall rating on the ABSR prototype instead
of a rating on baseline and solution each. It contained 28 statements to be rated regarding
human performance, safety, operating methods, and technical feasibility. If answers on
the post-validation questionnaire of the ten ATCos are reported in the following, the scale
ranges from 1 (fully disagree) to 10 (fully agree), i.e., the scale mean is 5.5.

2.5. Validation Schedule and Participants

Each validation day with an ATCo began with organizational tasks such as the signa-
ture of informed consent, a briefing, and a demographics questionnaire. It was followed by
60 min training run with low to medium traffic (30 min each with baseline and solution
condition, i.e., without ABSR and with ABSR support). Then, two simulation runs of 60 min
each with baseline and solution conditions, respectively, and medium traffic were carried
out. One run included a bird strike, and the other run included a sick passenger in an
aircraft as special situations that the ATCos needed to handle and coordinate with ground
vehicles. In order to average out the influence of the learning effect, baseline and solution
scenarios have been alternated for ATCos throughout the validation campaign. After each
run, the ATCos were requested to fill the mentioned questionnaires regarding workload,
situation awareness, etc., as sketched in Section 2.4.2 and gave comments and answers in
a debriefing. Finally, ATCos needed to fill out an overall tailor-made questionnaire (see
Section 2.4.4) on the ABSR system after the last debriefing.

It has to be noted that the technical team of the validation campaign replaced a laptop
and made a software update regarding the allowed central processing unit (CPU) load for
the automatic speech recognition (ASR) engine after the eighth ATCo in the simulation
campaign. However, no significant change in ABSR accuracy was noted due to this.

The validation campaign took place at DLR TowerLab in Braunschweig, Germany,
from 14 February to 3 March 2022 (8:30 a.m. to 4:30 p.m.). This study was conducted
with one ATCo per day for exactly ten days with five ATCos from Oro Navigacija (ON,
Lithuania) and five ATCos from AustroControl (ACG, Austria). All participants were
holders of an active tower ATCo license. The ten ATCos were not involved in the project in
terms of participation in previous work sessions.

The nine male and one female ATCo had an arithmetic mean age of 31.9 years (standard
deviation, SD: 5.5 years). The ATCos had 7.4 years of professional working experience
as an ATCo (SD: 5.8 years), while ON ATCos were already longer on duty (9 years, SD:
7.3 years) compared to ACG ATCos (5.7 years, SD: 3.9 years).

3. Results

Each of the ten ATCos participated in a baseline run without ABSR support and
a solution run with ABSR support, i.e., the data of twenty simulation runs with their
succeeding post-run questionnaires as well as the final ten post-validation questionnaires’
answers are analyzed in the following subsections. This section details:

(1) Objectively measured speech recognition performance;
(2) Objectively measured speech understanding performance;
(3) Perceived speech recognition and understanding performance;
(4) Operational and technical questions;
(5) Overall ratings on perceived workload, perceived situation awareness, satisfaction,

acceptance, trust, and usability;
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(6) Ratings per simulation run on perceived and more objectively measured workload,
perceived situation awareness, satisfaction, acceptance, trust, and usability;

(7) General debriefing feedback.

The tailor-made statements of the questionnaires to be rated by ATCos described in
the following contained the term ASR for brevity, even if automatic speech recognition
and understanding was meant and experienced by the ATCos. Furthermore, the ABSR
performance and the effect on subjective, as well as objective results are shown in more
detail on a per-case basis by comparing ON and ACG ATCos for two reasons. First, the
amount of training data differs by a factor of four between ON and ACG ATCos which
influences the speech-to-text and text-to-concept performance. Second, the three controller
working positions that (1) the Lithuanian ATCos are used to, (2) the Austrian ATCos are
used to, and (3) is used as a prototypic environment in the simulation differ so that the
familiarization with the system differs as well.

3.1. Results of Speech-to-Text Analysis
3.1.1. Audio Recordings with Transcriptions and Annotations

Verbal utterances of ATCos that were triggered with the push-to-talk button during
twenty hours of simulation runs (radar data duration) have been recorded as wav-files.
For each wav-file of the twenty simulation runs (baseline and solution) exists an automatic
transcription and an automatic annotation. We recorded 2427 wav files with a net speech
time of 4.5 h (i.e., when ATCos speak) during 20 h of radar simulation, i.e., the frequency
load by ATCos was roughly 22%. The average duration per utterance was 6.6 s.

All wav-files have been manually transcribed and annotated (“gold”) with DLR’s Con-
troller Command Logging Tool for Context Comparison (CoCoLoToCoCo, see Figure 10) to
enable comparison and calculations about recognition and error rates on the word level
and semantic level.

Aerospace 2023, 2, x FOR PEER REVIEW 15 of 44 
 

 

 
Figure 10. Software tool CoCoLoToCoCo to support transcription and annotation of ATC utter-
ances. 

The upper area of CoCoLoToCoCo (red dotted line) lists all audio files of a selected 
folder, has buttons and sliders to adjust the playback of the files, has a comment window 
and an error output window, as well as offers some further file-checking opportunities. 
The middle area (red solid line) shows the annotation view with a column per element of 
a controller command, the resulting annotation of an audio file in ontology format [9] 
(green font), and further buttons for rearranging and checking. The lower area (red point-
dash line) visualizes the transcription of a selected audio file following defined transcrip-
tion rules. 

The gold transcriptions of the validation trials contain in total 37,238 words without 
words that are not fully uttered and thus contain a “*” such as “lufthan*” due to our tran-
scription rules, i.e., each ATCo utterance contains roughly 15 words. Table A3 shows the 
top-25 1-grams, i.e., the uttered words with their absolute and relative frequency. The 
most often occurring words, “one” (6.43%) and “zero” (3.97%), are usually in the top three 
for other ATC communication corpora as well. However, the word at rank three, “tower” 
(3.96%), is specific for the multiple remote tower environment, in which the transmitting 
entity should always be named and, therefore, appears quite often. Normally, the digits 
from zero to nine fill the first ten ranks in ATC communication corpora. 

Furthermore, the words “runway,” “to,” and “cleared” appear in the top 12 as runway 
clearances and “cleared to” are often uttered. This latter result is confirmed by analyzing 
two real-life ATCo utterance corpora from Vilnius tower, as well as from Vienna tower, 
with roughly 7500 words in total each. This shows that the simulation setup and the chal-
lenges for the speech-to-text engine were quite realistic. 

Figure 10. Software tool CoCoLoToCoCo to support transcription and annotation of ATC utterances.

144



Aerospace 2023, 10, 560

The upper area of CoCoLoToCoCo (red dotted line) lists all audio files of a selected
folder, has buttons and sliders to adjust the playback of the files, has a comment window
and an error output window, as well as offers some further file-checking opportunities.
The middle area (red solid line) shows the annotation view with a column per element of a
controller command, the resulting annotation of an audio file in ontology format [9] (green
font), and further buttons for rearranging and checking. The lower area (red point-dash
line) visualizes the transcription of a selected audio file following defined transcription
rules.

The gold transcriptions of the validation trials contain in total 37,238 words without
words that are not fully uttered and thus contain a “*” such as “lufthan*” due to our
transcription rules, i.e., each ATCo utterance contains roughly 15 words. Table A3 shows
the top-25 1-grams, i.e., the uttered words with their absolute and relative frequency. The
most often occurring words, “one” (6.43%) and “zero” (3.97%), are usually in the top three
for other ATC communication corpora as well. However, the word at rank three, “tower”
(3.96%), is specific for the multiple remote tower environment, in which the transmitting
entity should always be named and, therefore, appears quite often. Normally, the digits
from zero to nine fill the first ten ranks in ATC communication corpora.

Furthermore, the words “runway,” “to,” and “cleared” appear in the top 12 as runway
clearances and “cleared to” are often uttered. This latter result is confirmed by analyzing
two real-life ATCo utterance corpora from Vilnius tower, as well as from Vienna tower, with
roughly 7500 words in total each. This shows that the simulation setup and the challenges
for the speech-to-text engine were quite realistic.

Table A4 lists the number of different words to reach a relevant portion of all uttered
words, i.e., if speech-to-text performs well on the 100 most often occurring words, almost
90% of the total number of words are covered.

3.1.2. Speech-To-Text Performance

Some abbreviations that are used for analyzing purposes in the following and in the
Appendices A and B are introduced:

• Onl = online (analysis as experienced by ATCos during simulation runs);
• Off = offline (analysis of audio files after the simulation runs);
• WER = Word Error Rate;
• Subs = Substitutions;
• Del = Deletions;
• Ins = Insertions;
• LevenDist = Levenshtein Distance [42] between automatic and gold transcription;

The speech-to-text accuracy is presented with details per each simulation run in the
tables of Appendix A (see Tables A1 and A2). Table A1 visualizes the WER for offline
recognition (Off) as evaluated after the end of the validation trials. It shows what results
would be already achievable when the technical setup is improved to deliver the offline
performance during the simulation runs. Table A2 visualizes the WER for online (i.e.,
real-time) recognition from the voice stream (Onl) as evaluated during the simulation runs,
i.e., the WER are usually worse than for Off.

There were some technical problems with the ABSR setup: (1) the audio device
continuously disconnected in one simulation run resulting in the loss of some data, and
(2) there was partly CPU overload, especially for the first eight ATCos. The performance of
the ASR engine was much worse in the online mode (as experienced by ATCos) than in
the later offline analysis of recorded audio files. Worse speech-to-text performance, i.e., a
higher WER being the sum of substitutions, insertions, and deletions regarding two-word
sequences divided by the total number of correct words, of course also led to worse text-
to-concepts performance. Some average and some specific results from these tables are
analyzed deeper in the following.

The average WER for all twenty runs was 5.1% in Off mode. When just considering
solution runs, the average WER even reached 4.4%, while baseline runs have an average
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WER of 5.7%. When omitting the single run with audio device problems, the maximum
WER was below 8% for all other 19 simulation runs in Off mode, i.e., the highest WER
in that single run was 11.5%, and the lowest WER for any run was 1.3%. It needs to be
admitted that the training data already contained a few speech samples from some ATCos
that also participated in the final validation trials.

In Onl mode, the average WER was 13.6%, while the average WER for solution runs
was 9.8% and for baseline runs 17.4% (see Table A2). There is a remarkable difference in the
WER of ON ATCos (6.8%) compared to ACG ATCos (12.8%) in solution runs. This probably
goes back to the amount of training data in the identical recording environment to the later
validation trials, which was only 3.6 h for ON and even 0.9 h for ACG.

Four of twenty runs still achieved good performance with WER < 3%. However,
three other runs that were affected by technical problems achieved a WER > 23%. Still,
the Onl performance was sufficient in almost all solution runs to produce an acceptable
text-to-concept quality. Nevertheless, the degradation of the speech-to-text performance is
higher from offline mode to online mode than expected and offers room for improvement.

3.2. Text-To-Concept Quality
3.2.1. Description of Gold Annotation Data Set

All twenty simulation runs consist of 7560 commands (ALL), whereof 3701 are from
baseline runs (BAS), and 3859 are from solution runs (SOL), respectively. Hence, there
were 3.1 commands per ATCo utterance and 5.1 words per command if we assume that all
words of an utterance are relevant to form a command.

However, it has to be noted that there are some word sequences annotated as com-
mands that do neither influence the aircraft status nor include any request, report or traffic
information from the ATCo side:

• First, the annotations GREETING (e.g., “hello”), FAREWELL (e.g., “bye”), and NO_
CONCEPT (e.g., “thanks;” no relevant ATC command in the utterance) that are sum-
ming up to 9.8% of commands during this study. These command types can indicate
that the ATCo workload might not be assumed as overwhelmingly high if they still
have time for welcoming, saying goodbye, and thanking anybody.

• Second, the annotation CORRECTION and CALL_YOU_BACK (e.g., “standby”) that
sum up to 1% of the commands might indicate a higher workload as ATCos often
correct themselves, are asking for repetition of the transmission or are telling to wait
for further information. The annotation SAY_AGAIN, which also belongs to this
command group, has not been used.

• Third, the annotation AFFIRM and one annotation of DISREGARD that sum up to
4.1% of the commands have ATC communication relevant content, even if they are no
commands in a classical sense. The annotation NEGATIVE, that also belongs to this
command group, has not been used.

Though, the above-listed annotations enable a workload analysis of human ATC
operators that will be published in another paper. 15 of the 80 possible command types for
tower ATCos as defined in the ontology, such as GO_AROUND and ABORT TAKEOFF, did
not occur at all in the 7560 commands. This means 65 different command types have been
used by the ten ATCos, e.g., PUSHBACK, TAXI TO, CLEARED TAKEOFF/LANDING,
ENTER_CTR, etc. Table A5 lists the relative occurrence of all command types greater than
1%. The last type, “others”, groups all command types that occurred between 0.33% and
1%, such as CONTACT, ENTER_CTR, LINEUP_BEHIND, CLIMB, and DIRECT_TO. In
total, there are 36 different command types that appeared more than 25 times, i.e., more
than 0.33%.

The most often used command type is—unsurprisingly—STATION, as ATCos were
asked to utter it in each radio transmission. However, 1529 occurrences (20.2% of com-
mands) in 2427 utterances mean that ATCos did not follow this multiple remote tower
safety-related request in 37% of all utterances. This might not be critical if ATCos just
uttered “bye,” but in any case, it should be considered for the multiple remote tower
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concept. The (CONTINUE) TAXI TO/VIA commands sums up to 11.5% of commands.
The INFORMATION WINDSPEED/DIRECTION even sum up to 15% of the commands as
they were instructed for all takeoffs and landings/touch-and-gos. The exclusive runway
clearances CLEARED TAKEOFF/LANDING/TOUCH_GO/VISUAL sum up to 6.8% of
commands. The runway usage clearances LINEUP, LINEUP_BEHIND, VACATE (VIA),
and BACKTRACK sum up to 4% of commands.

A total of 29 of those 65 used command types occurred a maximum of 25 times for all
ATCos in total such as BACKTRACK, CLEARED VISUAL, HOLD_SHORT, JOIN_TRAFFIC
_CIRCUIT, LEAVE_CTR VIA, and ORBIT. For the above considerations, we neglect that
only 87% of all words that are available in the gold transcriptions have been used by the
automatic command recognition algorithm to classify commands (see column “Unknown
Classified Rate” in Tables A6, A8 and A10).

It needs to be mentioned that our prototype follows a more holistic approach than
some very basic prototypes of other actors in the field of speech recognition and understand-
ing [43]. Our command extraction algorithm does not only extract callsigns (DLH4TN),
basic types (TAXI), and values, but more sophisticated command types of multiple parts
(TAXI TO/VIA), units, qualifiers, conditions (WHEN READY), chain commands with
multiple callsigns, tackles many types of corrections through the ATCo and even robustly
recognizes elements of the ontology if there are minor and major (acceptable) deviations
from ICAO phraseology [44] in the utterances. Furthermore, we support a bigger number
of command types (from the agreed ontology) as defined by the different actors themselves.
The execution time of the command extraction per utterance in offline mode on a standard
laptop, i.e., on a complete transcription, has an arithmetic mean of 2 ms and a median
of 1.2 ms with a minimum execution time below 0.1 ms and a maximum execution time
below 40 ms independent of performing command extraction on gold, offline or online
transcription files. In addition, our prototype is—to the best of our knowledge—the first to
support multiple remote towers at the same time (not just one) and delivers recognition
error rates on an acceptable level despite all the above-mentioned complex add-ons.

3.2.2. Description of Results of Automatically Extracted Commands on Different Versions
of Speech-To-Text Transcriptions

The following three subsections present recognition and error rates on callsign and
command level, as well as the portion of words from the utterances that have not been used
for ATC concept extraction while referring to Appendix B. More details on the semantic
level metrics can be found in [45]. The command extraction results will also be presented
by comparing the different command type groups:

• “All;”
• “Relevant” if appearing more than 25 times in all 20 runs;
• “EFS” has a visible effect on the electronic flight strips;
• “Status” that changed the aircraft status in the electronic flight strips;
• “Outside” is just shown on the monitors for the outside view;
• “Hypo-EFS” could have been highlighted in the flight strips but have not been during

the trials, such as recognizing the active runway in an utterance.

3.2.3. Speech Understanding Performance on Gold Transcriptions

In total, 65 different command types have been automatically extracted from the
gold transcriptions, i.e., the same number as in gold annotations. Table A6 shows how
well the ontology-conform automatic recognition of ATC commands is modeled. The
command recognition rate is around 96% with an error rate below 2.5%; the rejection rate
(not reported herein) causes a difference to 100% in the total sum of command rates. The
callsign recognition rate even achieved 99.8% with an error rate of 0.2%. The command
recognition rates in solution runs were 96.6% for ON and 95.4% for ACG.

A total of 18.3% of all problematic annotations (recognized commands) go back to the
three ground vehicles in the scenario that make up 11.5% of all relevant traffic. Further,
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7.3% of problematic annotations go back to the emergency aircraft, even if this makes up
3.8% of the flights.

18 of the 80 defined command types from the ontology had visible effects in the flight
status icons of the electronic flight strips—hereinafter referred to as command type group
Status. Three further commands had a visual effect on the textual data of the electronic
flight strips. These 21 commands that influenced the appearance of the electronic flight
strips are grouped in the command type group EFS. Three supported commands contained
weather information from the Outside view (QNH, INFORMATION WINDDIRECTION and
WINDSPEED); the values of four further supported commands could have been displayed
in the relevant field of the electronic flight strip. However, this highlighting has not been
fully implemented yet (command group Hypo-EFS), i.e., STATION, INFORMATION ATIS,
INFORMATION ACTIVE_RWY, and HOLD_SHORT for all possible airfield elements such
as taxiways. The command type group Relevant includes all commands that have been
automatically extracted more than 25 times. Table A7 shows the command recognition
performance on the above-mentioned command type groups, i.e., presenting command
recognition rates of 96% and more.

3.2.4. Speech Understanding Performance on Offline Transcriptions

The command recognition results of Table A8 are based on the output of the speech
recognition engine, i.e., the transcription from Off mode. The command recognition rate
is above 91%, with an error rate below 5%. The callsign recognition rate achieved almost
98.5% with an error rate below 1%. The command recognition rate of command type group
EFS is beyond 93%, as Table A9 shows. 16.2% of all problematic annotations go back to the
three ground vehicles that comprise 11.5% of all relevant traffic.

3.2.5. Speech Understanding Performance on Online Transcriptions

Tables A10 and A11 present the command recognition results on transcriptions from
Onl mode. The command recognition rates are roughly 10% worse than in Off mode. The
command recognition rate for solution runs in which the ATCos saw the ABSR output was
82.9%, with an error rate of 6.6%. However, there is a huge difference in the command
recognition rate for ON ATCos (88.0% based on WER of 6.8%) compared to ACG ATCos
(77.7% based on WER of 12.8%). As the command recognition rates for ON and ACG
ATCos were both close to 96% on gold transcriptions, the high WER resulting from the
mentioned low amount of available training data was a major impact on the online com-
mand recognition next to some deviations of ATCos from ICAO phraseology. The online
callsign recognition rate achieved 94.2% with an error rate of 2.4%. This again shows the
influence of the high WER on the ATC concept extraction.

The following measurements, especially the questionnaire ratings of ATCos, are based
on the Onl mode, as this performance was “experienced” by ATCos during simulation
runs.

3.2.6. Subjectively Perceived Speech Recognition and Understanding Performance and
Functionality (Post-Validation)

The post-validation questionnaire contained nine statements about technical feasibility
with respect to the recognition and error rate of callsigns and commands as well as the ASR
functionality:

1. The recognition rate and recognition error rates for callsigns by ASR were at an
acceptable level. [CsgnRecRateOK];

2. The recognition rates and recognition error rates for commands by ASR were at an
acceptable level. [CmdRecRateOK];

3. Overall, the level and quality of information provided by ASR were an acceptable
level. [ASRQualInfOK];

The post-validation questionnaire contained four statements about the ASR interface:
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4. The ASR tool interface (HMI) provides suitable access to relevant information in all
situations. [ASRrelevInfo];

5. The ASR tool interface (HMI) does not display any non-essential information (clutter).
[ASRessentInfo];

6. The ASR tool display is both comprehensible and acceptable. [ASRcomprehaccep];
7. The timeliness of the ASR tool display is within acceptable limits. [ASRtimeliness];
8. Automatic Speech Recognition (ASR) highlighting aircraft callsigns in the electronic

flight strip display technically worked well. [Highl-Csgn];
9. Automatic Speech Recognition (ASR) highlighting aircraft callsigns in the electronic

flight strip display supports recognizing which aircraft callsign has been (speech)
recognized quickly. [Recog-Csgn].

The results are shown in Figure 11. ATCos rated the recognition of callsigns as almost
perfect, with a mean value of around 9 on a scale from 1 to 10. The recognition rates of
ATC commands were also perceived as good, with a mean value of around 7. The general
quality level of information presentation from ASR was rated to be at an acceptable level
with a mean value of slightly beyond 7. It has to be noted that the command recognition
and overall ASR information displayed were rated much higher from ON than from ACG
ATCos. This is most probably due to the underlying WER of 13% for ACG ATCos and 7%
for ON ATCos, which is, however, still improvable to reach the 4% WER of offline analysis.
Relevant information about the ABSR system can be assessed (mean value 7.4, but more
than 1.5 points rated higher by ON than by ACG). The ASR tool seems to only present
essential information with a mean value of 8.2 (again, ON rated almost 1.5 points higher
than ACG). The ASR visualization is perceived as comprehensible with a mean value of 7.7
(again, ON rated almost 2 points higher than ACG). Finally, the output of the ABSR system
was shown timely (mean value 7.5) due to the ATCo feedback.
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The highlighting of callsigns in the electronic flight strip display (Highl-Csgn) was
perceived as working technically very well, with a mean of 9.7 on a 10-point scale and a low
standard deviation of 0.5. The second statement Recog-Csgn rated with a mean value of 8.1,
helped the ATCos to detect which aircraft callsign has been recognized by the ABSR system.
This information is needed to decide whether the following recognized ATC commands are
highlighted for the correct callsign. The interesting part of these answers is the comparison
with the objective measurements, i.e., the online callsign recognition rates, which are 92.1%
for Lithuanian ATCos and 91.3% for Austrian ATCos (see Table A10). The same applies to
the callsign recognition error rates, which are 3.9% for ACG, and also much higher than the
2.4% for ON ATCos. We have no real answer for this discrepancy between subjective rating
and objective measurement.
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3.3. Answers to Subjective Post-Validation Questionnaires
3.3.1. Operational Use of ASR (Post-Validation)

The post-validation questionnaire contained five statements about the operational
feasibility of the ASR system:

1. I can apply operating methods in an accurate, efficient, and timely manner with ASR.
[AccOpMeth];

2. I think that operating methods are clearly identified and consistent in all operating
conditions. [OpMethConsis];

3. Procedures and operating methods are acceptable when using the ASR tool. [ProcOK-
wASR];

4. There are no changes needed to current working methods/procedures to fully support
the use of the ASR tool. [NoChgNeed];

5. The ASR tool would be operationally acceptable under either nominal or non-nominal
conditions. [OpAccAllCond].

The results are shown in Figure 12. The operating methods with ASR seem to be
accurate, efficient, timely, and consistent in different conditions, with mean values of 8 and
7.4, respectively. Procedures and operating methods seem to be fine, with a mean value
of 8.5 and a standard deviation of only 1.0. There are some changes to current working
methods needed to fully support the use of the ASR tool, as the mean value equals the
scale mean value of 5.5. However, ON ATCos rated this statement with almost 7, while
ACG ATCos rated it with slightly above 4 points. The ASR seems to be operationally
acceptable under different conditions, most probably under the majority of nominal and a
few non-nominal conditions, as the ATCo rating was just slightly beyond the scale mean
value.
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3.3.2. Human Factors Questions (Post-Validation)

The post-validation questionnaire contained six statements on human factors:

1. I think that ASR supports me in maintaining my workload at an acceptable level.
[ASRsupATCoWL];

2. I think that ASR supports me in maintaining an adequate level of situational aware-
ness. [ASRsupATCoSAw];

3. My situational awareness is maintained at an acceptable level with Automated Speech
Recognition (ASR). [ASRmaintSAw];
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4. I see many safety-related issues to be solved regarding automatic speech recognition
implementation. [ASRindSafeIssu];

5. I think that ASR did increase the potential for human errors. [ASRincrHumErr];
6. Overall, I was satisfied performing my task with ASR. [JobSatisf].

The results are shown in Figure 13.
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ASR seems to support maintaining situation awareness and workload of ATCos
at an acceptable level with mean values of 7.5 and beyond on a 10-point scale. The
ASRsupATCoWL statement was rated with 7.8 on a 10-point scale (90% of ATCos rated this
item with 7 or above). The ASRsupATCoSAw statement was rated with 7.7 on a 10-point
scale (90% of ATCos rated this item with 7 or above). The statement, if ASR induced safety
issues or increased the potential for human errors, was rated with mean values below the
scale mean of 5.5. ATCos rated their job satisfaction with using ASR high (mean value of 8
on the 10-point scale).

3.3.3. Acceptance (Post-Validation)

The post-validation questionnaire contained three statements about acceptance of and
trust in the ASR system:

1. I think that the ASR system is adequately usable. [ASRadequse];
2. I would accept such an ASR system in my future tower CWP. [ASRacceptCWP];
3. My trust in the ASR system is at an acceptable level. [ASRtrust].

The results are shown in Figure 14. ATCos rated the adequate usage of ASR with a
mean value of around 7. However, it has to be noted that it was rated much higher by
ON than by ACG ATCos. All ATCos would accept such an ASR system in their future
tower CWP with a mean value of 7.5. They trusted the ASR system with a mean value of
around 7.
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3.4. Answers to Subjective Post-Run Questionnaires
3.4.1. Controller Acceptance Rating Scale (CARS) (Post-Run)

The post-run questionnaires contained the CARS statement to be rated on a scale
from 1 to 10, with 10 being the best value, as listed in Appendix C.1. The results of the
CARS questionnaire are shown in Figure 15. The acceptance was, on average, 0.6 points
higher on the CARS scale for the baseline condition compared to the solution. The CARS
questionnaire was filled out by each ATCo twice, once after the run with ABSR support
and once after the run without ABSR support. Therefore, we are able to perform a paired
t-test. After compensating sequence effects, the α was 0.1 to reject the inverse hypothesis
that ABSR support reduces the controller acceptance due to CARS. The absolute value
was 6.8 versus 6.2 (0.8 points higher for ON on average and 0.8 points lower for ACG
on average).
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3.4.2. Trust (SATI) (Post-Run)

The post-run questionnaires contained the six statements of SATI, as listed in Ap-
pendix C.2. The seven-item answer scale ranged from “Never, Seldom, Sometimes, Often,
More Often, Very Often, and Always.” To present the results in a bar diagram, “Never” is
translated to 0%, “Seldom” to 1/6 %”. . . “Very Often” to “5/6 %” until “Always” to 100%.
The results are shown in Figure 16.
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ABSR support reduced trust in automation due to SATI (α = 0.25). However, the
usefulness of the system (USEFUL in Figure 16) was rated much better for SOL than for
BAS (α = 0.05). The other five mean values are better for BAS than for the SOL condition.
It is noteworthy that the four statements RELIABLE, ACCURACY, UNDERSTAND, and
ROBUST from ON ATCos have better ratings for SOL than for BAS condition on average.
The ambivalence of results will be discussed in Section 4.

3.4.3. Perceived Situational Awareness (SASHA ATCo) (Post-Run)

The post-run questionnaires contained the six statements of the SASHA ATCo, as listed
in Appendix C.3. The seven-item answer scale ranged from “Never, Seldom, Sometimes,
Often, More Often, Very Often, and Always.” To present the results in a bar diagram,
“Never” is translated to 0%, “Seldom” to 1/6 %”. . . “Very Often” to “5/6 %” until “Always”
to 100%. The results are shown in Figure 17.
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ABSR support reduced the situation awareness of ATCos due to SASHA (α = 0.33).
However, “searching for information” was less needed in the SOL condition (α = 0.15).
The mean values of the first two items, AHEAD and FOCUS, are better for BAS than for
SOL conditions. The mean values of the last four items, FORGET, PLAN, SURPRISE, and
SEARCH, are equal or better for the SOL condition compared to the BAS condition without
analyzing standard deviations, as differences in mean values are rather small.
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3.5. Perceived Workload (High Workload Contribution) (Post-Run)

The post-run questionnaires contained a free-text question about high workload:
“Which factors/events/conditions have contributed to potentially high workload?”.

The structured answers and the number of ATCos noting this after each conducted
simulation run (multiple notions in one questionnaire answer possible) were as follows:

• New/unknown airspace/airport layout (especially multiple remote towers): 15 times;
• New/unknown equipment/hardware/software/electronic flight strips: 7 times;
• Checking of ABSR output (only in solution condition): 4 times;
• Unexpected/unusual air traffic situations: 3 times;
• Other: Secondary task (2 times), tower view/runway perspective (2 times), slightly

different phraseology to always name the calling tower (2 times), miscommunication,
system errors.

Interpreting the above results, 15 of 20 ATCo answers stated that the unknown multiple
remote tower environment with unknown airport layouts induced a higher workload.
Furthermore, many ATCos remarked that the flight strip handling was difficult (as some
details were different from “home”). This means that the majority of workload-increasing
factors can be assigned to environmental aspects that should normally not be tested in the
ABSR validation trials. The above-listed checking of ABSR output, as well as unexpected
situations and some further aspects, seem to have been only a minor factor for the higher
workload.

3.6. Perceived Workload (NASA-TLX and Bedford Workload Scale) (Post-Run)

The post-run questionnaires contained the six statements of NASA-TLX (National
Aeronautics and Space Administration—Task Load Index) as listed in Appendix C.4 and
the two statements of the Bedford workload scale to rate the average workload (AVG) and
peak workload (PEAK) on a scale from 1 to 10 with 10 being the highest workload. In
addition, the 15 pair-wise comparisons of workload contributing factors (as the other part
of the weighted NASA-TLX questionnaire) were assessed with ATCos once.

The results of the weighted NASA-TLX and the Bedford workload scale are shown
in Figure 18. Figure A1 in Appendix C shows the weight per each of the six dimensions
for NASA-TLX, which is almost equally distributed except for more weight for mental
workload than for physical workload. The overall weighted workload (OW) due to NASA-
TLX was higher for the solution than for the baseline condition: 43.1 and 38.9 (α = 0.02),
respectively, with huge standard deviations around 17.5. However, the general difference
between baseline and solution was only induced by the ON ATCo ratings, as the OW for
ACG remained the same in baseline and solution.
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Furthermore, a clear learning effect during the validation day in terms of NASA-TLX
OW can be seen. Those five ATCos who started with a baseline, rated the baseline (their
first run) with an OW of 41.9; those five ATCos who started with a solution, rated the
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baseline (their second run) with an OW of 32. Those five ATCos who started with the
solution, rated the solution (their first run) with an OW of 48.9; those five ATCos who
started with baseline, rated the solution (their second run) with an OW of 37.2.

The average and peak Bedford workload were 0.9 and 0.7 points higher, respectively,
in the solution condition with ABSR support compared to the baseline condition (α = 0.001).
The peak workload was roughly 1.5 points higher than the average workload. The workload
level, in general, was roughly two points lower for ACG than for ON ATCos.

3.7. Perceived Workload through Automation Impact (AIM-s) (Post-Run)

The post-run questionnaires contained the sixteen statements of AIM-s as listed in
Appendix C.5. The seven-item answer scale ranged from “None, Very Little, Little, Some,
Much, Very Much, Extreme.” To present the results in a bar diagram, “None” is translated
to 0%, “Very Little” to 1/6 %”. . . “Very Much” to “5/6 %” until “Extreme” to 100%. The
statements SHARE and TMN are not analyzed further as there were no team members
during the simulation runs (fourteen statements remain). Figure 19 shows the results.
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After compensating sequence effects, the overall perceived workload due to AIM-s is
not statistically better with or without ABSR support. We measured an α of 0.49, which is
not better than throwing a coin. However, the anticipation of the future air traffic situation
was much better for SOL than for BAS (α = 0.02). Nine of the fourteen statements have
been rated better on average (less) for the SOL condition than for the BAS condition. Only
the five statements related to information RECOG, RECL, SCFP, ACCD, and GETI have
been rated worse for SOL condition compared to BAS condition.

3.8. Perceived Workload (Instantaneous Self-Assessment of Workload (ISA)) (Within-Run)

During each simulation run, ATCos needed to rate their workload of the recent
five minutes on a scale from 1 (bored) to 5 (almost overloaded). The results are shown
in Figure 20. The average ISA workload was 0.1 points less, i.e., better, in solution
condition with ASR support compared to baseline condition with α = 0.15 (2.1 and
2.0 points, respectively).
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The ISA of ON ATCos was on a higher level with 2.6 and 2.4, respectively, and had a
much lower standard deviation of below 0.3. The ISA score of ACG ATCos was around 1.6,
with a standard deviation more than twice as much as of ON ATCos.

3.9. Objectively Measured Workload with Secondary Task (Card Sorting) (Within-Run)

The ATCos always needed to make sure that their primary task of doing ATC remains
safe and efficient. However, if they had time for a secondary task, i.e., free mental capacity,
they should sort cards. This method has already been used in earlier ASR projects to
generate a more objective measure of mental workload than just via self-ratings.

ATCos needed to sort 48 cards of a German Doppelkopf deck into six decks (Aces,
Kings, Queens, Jacks, Tens, and Nines). In the beginning, all 48 cards are on one stack, with
the picture side of the cards looking downwards. Each card needed to be turned around in
a single move with just one hand to put it onto the correct of the six decks. After sorting,
ATCos should name one to four randomly missing cards that the supervisor took out of
the 48 cards deck prior to starting sorting. If there was an error in naming the missing
cards, e.g., not all missing cards are named, ATCos must try again until all missing cards
are named correctly. The time measurement in seconds started when the deck of 48 cards
was put next to the electronic flight strip display. The time measurement ended when all
missing cards were named correctly. Sorting cards were trained once in each of the thirty
minutes training runs. Card sorting in the baseline and solution runs started after 10 min
(for at least 15 min or at least three rounds) and again after 40 min (for at least 13 min or
at least three rounds). Those time frames comprised higher traffic density to measure any
difference in workload through ASR support.

The results are shown in Figure 21. ATCos finished their secondary task 8% slower in
baseline runs when not being supported by ASR (395 s vs. 364 s with a standard deviation
of 305 s and 262 s). This difference was 9% for ON and 7% for ACG ATCos. When
compensating sequence effects with the SECT technique, ATCos were even 9% slower in
baseline runs compared to solution runs. After compensating sequence effects, the α was
0.24 to reject the hypothesis that ABSR support does not reduce the workload of ATCos.
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Figure 21. ATCo performance in the secondary task (card sorting).

When translating the timing results into workload, again, ON ATCos experienced a
higher workload level (around 9 min sorting average) than ACG ATCos (around 3 min
sorting average with more task repetitions than ON ATCos), but workload in solution
condition seems to be lower than in baseline regarding the secondary task of card sorting.
Additionally, the secondary task showed a great learning curve, i.e., ATCos were almost
19% slower in sorting the cards in their first simulation run compared to their second
simulation run (baseline and solution alternated).

3.10. System Usability (Post-Run)

The post-run questionnaire contained the ten statements of the System Usability Scale
(SUS), as listed in Appendix C.6. The results are shown in Figure 22 (one ATCo did not
answer one of his ten statements both in baseline (without ASR) and solution (with ASR)
condition. Therefore, the scale mean “3” ((5-1)/2) was chosen as a replacement to not
heavily influence the overall result). ABSR support increases the system usability due to
SUS ratings (α = 0.16). There were three statements rated in the expected direction with an
α < 0.075, i.e., ATCos like to use the system, they do not deem it complex, and they hardly
need support to use it.
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Figure 22. Subjective ATCo ratings on system usability.

Considering all ATCos, the SUS score was 4 percent absolute (5.7% relative) higher in
the solution condition (SOL) with ABSR support compared to the baseline condition (BAS)
without ABSR support. The difference of 4 percent remains when just analyzing the ON
score or ACG score independently. However, the score itself is 14.5%, absolutely higher
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for ON than for ACG. This is probably due to the fact that ON really liked the electronic
flight strip display (also in the baseline version), whereas ACG ATCos needed to adapt
themselves more to the strip system due to the difference in their daily-life system.

3.11. Debriefing Feedback (Post-Validation)

The debriefing was conducted as a semi-structured interview with some pre-defined
questions and some options for further thoughts and inputs. The feedback of ATCos
is semantically reported per category in the following subsections—the most important
feedback relevant for future usage of ABSR is listed after arrow symbol bullets. However,
also the remaining feedback helps to improve future simulation planning, i.e., to know
which aspects that are not the core part of the study do influence the subject’s experience
and study results. For example, the prototypic flight strip system induced a row of effects
on how the ABSR output is perceived. The last question outlines further research or usage
of ABSR systems.

3.11.1. Study Preparation and Conduction

• Briefing slides via e-mail two weeks before the trials and briefing at DLR was
very good;

• All ATCos felt well-trained for the purpose of the validation after one hour of training;
• Simulation pilots performed well;
• Air traffic scenarios were rated to be fine for the study purpose;
• On the one hand, the baseline condition (manual work) was similar to everyday work,

so performance might be better, therefore (2 ATCos);
â On the other hand, ASR in solution condition was good because it supported using a

flight strip system that ATCos were not used to.

3.11.2. ABSR Functionality (also Related to Electronic Flight Strip Display)

â ABSR concept and implementation were found to be good by many ATCos;
â Checking ABSR output in the flight strip display slows some ATCos because, in the

baseline mode, ATCos tick while speaking;
â Some ATCos judged the speed of ABSR output while speaking as sufficient; two

ATCos wanted to have faster output;
â Non-standard situations should be covered well, i.e., better, by ASR;
â Speech understanding (annotation process) was good for covering errors in speech

recognition (transcription process);
â Highlighting of callsigns and status icons (in green) and the 10s-highlighting mecha-

nism in electronic flight strips were fine for all ATCos;
â When ASR worked fine, a tendency to over-rely on automatism existed;
â In case of non-recognition, a double effort to manually recognize the error and correct

it compared to pen input (2 ATCos);
• ABSR output in outside view (complete transcription and annotation in solution

condition) was just checked for curiosity by all ATCos.

3.11.3. Feedback to Colleagues Not having participated

When I am home in Lithuania/Austria, I tell my colleagues that working with DLR’s
speech recognition was:

â Interesting (said by all ON ATCos);
â Worked pretty well (2 ATCos);
â Positively surprising (even when speaking fast);
â Very good even if not being an early adaptor of new technologies and being very

safety critical.

158



Aerospace 2023, 10, 560

3.11.4. Usefulness of ASR

If you would use it tomorrow in your tower controller working position (not multiple
remote towers), would ASR help?

â Yes, that would be great (3);
â Nothing to be changed to be used tomorrow (1);
â Great support is possible if some/many aspects are improved (4).

3.11.5. Used Phraseology in Baseline and Solution Runs

Did you think you have spoken differently in baseline and solution conditions?

â In baseline less carefully spoken because only simulation pilots needed to understand
(3 ATCos);

â Spoken closer to phraseology in solution as being better supported (2 ATCos);
â Some stated that there was no difference in speaking;
â “ATCos automatically become more phraseology conform: That is one of the greatest

advantages of such a technology.”

3.11.6. Flight Strip System (More Related to ‘Multiple Remote Tower” than the Core Study
Purpose ‘ABSR Support’)

• Runway bay handling needs to be improved (sorting, highlighting, timing, etc.);
• Drag-and-drop functionality over the borders of flight strip bays for individual plan-

ning purposes was needed;
• Handling training flights (touch-and-go/low approach) that do not switch from an

arrival flight strip to a departure flight strip were slightly difficult;
• Strip handling for aircraft crossing the control zone is difficult with status options;
• Visual flagging of strips (left/right) would be beneficial;
• Hide some non-frequent status icons;
• “Takeoff” status should include “lineup”-status (if not given explicitly);
• A combination of the selection of taxi status and taxiway would be easier;
• Suggestions for colors, e.g., ground vehicles, consistency with other systems;
• One ATCo loved the flight strip system; the majority of ATCos were ok with it;
• Many ATCos liked the fade-away functionality of flight strips;
• The portion of gazes at the three areas ‘flight strip display,’ ‘outside view,’ and ‘radar

view’: too much on flight strips and too few on outside view where one can hardly
identify small objects.

3.11.7. Further Applications/Ideas/Things to Be Changed?

â Callsign highlighting in flight strip display from pilot utterance would help to identify
the communication partner;

â Speech log for pilot utterances (especially in emergency situations) anywhere on the
controller screen;

• Connect ABSR output with:

a. Radar information for automatic setting of landed/departed status;
b. Lighting system to turn off stop bar lights in case of lineup clearance;
c. Follow the greens for correct lighting;
d. Airport phone conversation to automatically extract and include stand num-

bers given by the airport;
e. Safety net functionality for dedicated aspects in case of good error rates, e.g.,

readback error detection;
f. Transcription for incident analysis and searching for callsigns; other analysis

on transcribed data;
g. Great technology for on-the-job training.
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4. Discussion on Major Study Results

The results on mental workload, situation awareness, satisfaction, acceptance, trust,
and usability are ambivalent. The subjective post-run ratings on NASA-TLX, Bedford
workload scale, and AIM-s, when interpreted as a whole, indicate a worse performance in
solution runs with ABSR support compared to baseline runs without ABSR support.

However, the subjective post-validation rating on ABSR support for workload, the
self-assessed workload ratings during the simulation runs by ISA, and the performance
measurement of the objective secondary task indicate that ABSR support positively influ-
ences ATCo workload.

There might also be an influence through the usage of standardized and tailor-made
questionnaires. The general low to medium workload level, as rated with roughly two on
average on the five-point instantaneous self-assessment of workload scale, causes that it
is hard to unambiguously measure a workload effect. Hence, the necessity for controller
support functionalities might also be low in such a multiple remote tower environment.

The complexity of the task came with supervising three airports remotely at the same
time with a working position the ATCos had not seen before. This could be the reason why
especially the callsign highlighting was well-acknowledged by ATCos in order to reduce
search times at the different displays. A workload reduction, especially in low workload
conditions, is not always beneficial. Hence, it is also a success if the mental workload of
ATCos is balanced at a medium level without peaks and boredom.

Similarly, the post-run rating on situation awareness (SASHA) indicates a negative
influence, whereas the two rated post-validation statements on situation awareness at an
acceptable level with ABSR support have answer values in the most positive scale third.
Very similar effects were also seen for satisfaction, acceptance, and trust when comparing
post-run ratings with overall post-validation answers.

The usability ratings (post-run and post-validation) seem to all indicate favor for ABSR
support. The score of the system usability scale was four points better for the solution (with
ABSR support) compared to the baseline (without ABSR support). A total of 80% of ATCos
(with 8/10 or more points on the questionnaire scale) stated that they would accept such an
ABSR system in their usual working position and that they could apply operating methods
in a timely manner. Though, a row of adjustments were encouraged by ATCos, i.e., to make
ABSR also reliable under non-nominal conditions where the pressure on ATCos is already
high. The need for changes was rated very inhomogeneous by the different ATCos, i.e.,
some had already seen good support with the prototype’s current technology readiness
level, and others wanted to increase the number of covered situations and examples.

However, the comparison of a further objective measure with a subjective measure-
ment again shows the ambivalence of some ATCo ratings: While ACG ATCos rated the
perceived callsign recognition quality with 1.8 points higher than ON ATCos on a 10-point
scale and the perceived command recognition quality with 1.6 points lower than ON ATCos
such an effect cannot be seen in the online recognition rates where the callsign recognition
rate and the command recognition rate in solution runs of ON ATCos was 2% and 10%
(consistently both) better than of ACG ATCos, respectively.

Our study results based on text-to-concept analysis also revealed a potential safety
issue for multiple remote towers: Even if ATCos were asked to utter the name of their
current transmission station in each radio transmission, the station name, e.g., vilnius tower,
was missing in every fifth utterance. This might confuse listening to cockpit crews being
on or flying to one of the other two airports.

The subjective feedback through questionnaires etc., and the results from objective
measurements at least are not consistent or even contradictory. This is a hint that ABSR’s
performance does not match with ATCos expectations. Objectively a word error rate of
10% with a command recognition rate of 80% might be sufficient to already have positive
effects on workload. The ATCos are then, however, not trusting the system, which will be a
showstopper. Objective improvements are not enough. ATCos also need to be convinced
by their subjective feelings. Previous validation trials for Frankfurt airport to support apron
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controllers by ABSR to reduce workload for pre-filling electronic flight strips [12] and for
Vienna approach controllers [41] indicate that a command recognition rate greater than
90% is needed.

5. Conclusions and Outlook
5.1. Conclusions on ABSR Study in Multiple Remote Tower Environments

Human-in-the-loop trials were conducted with five Austrian and five Lithuanian
air traffic controllers (ATCos) to validate whether an assistant-based speech recognition
(ABSR) system can support air traffic controllers in a multiple remote tower environment.
In baseline runs, controllers needed to manually maintain electronic flight strips without
ABSR support, whereas in solution runs, they were supported by ABSR through callsign
highlighting and automatically inputting recognized commands from ATCo utterances
into electronic flight strips.

This study recorded a huge amount of data with results analyses that are shared
with other researchers by this article. The chosen “within-subject design” [46] assessed
the dependent variables mental workload, situation awareness, satisfaction, acceptance,
trust, and usability with the independent variable “availability of ABSR support”. Further
qualitative feedback was gathered on ABSR accuracy, technical functionality, and operating
methods. Although a very small number of training data of 3.6 and 0.9 h, respectively,
was available for the adaption of the ABSR models to Lithuanian and Austrian tower
phraseology, some results show statistical significance and are in line with findings of
earlier ABSR projects from an approach environment [8]. The text-to-concept accuracy of
the speech understanding module performed well, i.e., correcting wrong word recognition
by context information. A callsign recognition rate of 94.2% and a command recognition
rate of 82.9% were achieved, although each 10th word was wrongly recognized due to
the observed word error rate of 9.8%. Given an independent distribution of word errors
and an average callsign length of five words, a word error rate of 10% would result in a
callsign recognition rate of below 60%, i.e., (1–0.1)5. For an average command length of six
words, including values, qualifiers, and conditions plus the five words for the callsign, the
expected command recognition rate would be below 35%, i.e., (1–0.1)11. These theoretical
values were outperformed by our speech understanding module (command recognition)
by using context information.

The study results on human factors comprised subjective ratings on mental workload,
situation awareness, satisfaction, acceptance, trust, and usability via standardized and
tailor-made questionnaires, the self-assessed workload during simulation runs, and an
objective method to assess workload based on a secondary task.

The analysis results on the dependent variables were ambivalent. The reasons are
the small number of study subjects, the prototype of a non-operational user interface,
and the low workload resulting from low to medium traffic in the multiple remote tower
environment of the chosen airports. A positive influence on workload was found with
the self-assessed workload ratings during the simulation runs and the performance in the
secondary task as a more objective measurement during simulation runs. Future validation
trials involving ATCos should focus more on objective or live measurements than on
retrospective ratings.

Our study results with ATCos reporting on benefits and drawbacks raise detailed
awareness and give recommendations on which aspects of automatic speech recognition
and understanding for a multiple remote tower environment are already solved and which
aspects require deeper research to go beyond the now achieved technology readiness level
four.

The speech-to-text performance is a prerequisite to enable good text-to-concept perfor-
mance. An error analysis after the validation trials revealed processor overload as a factor
in decreasing our speech-to-text performance. When applying our command extraction
on offline speech-to-text analysis results having a word error rate of 4.4%, we achieve a
command recognition rate of 91.8% and a callsign recognition rate of 98.2%. The data
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analysis showed that ABSR support has a statistically significant positive effect on the
usage of ICAO phraseology: The above-reported solution runs have higher command
recognition rates than baseline runs because ATCos obtain better support if recognition
rates are higher. If ATCos are sticking closer to ICAO phraseology just by the pure presence
of an ABSR system, that will already be a safety feature. Some ATCos, i.e., the human
operators that would use the operating system later on, highlighted that such an ABSR
system would be a great support in their working position.

5.2. Outlook on Future Work

The amount of training data must be further increased, given representative samples.
Furthermore, a large amount of data must be recorded from operations rooms (not from
labs) because this is the operational environment. The European-wide agreed ontology
for the annotation of ATC utterances was successfully used and enhanced in this study
and should be further exploited or standardized. The continuous mutual enhancements
of the ontology for en-route/oceanic, approach, tower, and apron traffic within the ASR
projects HAAWAII (Highly Automated Air Traffic Controller Workstations with Artificial
Intelligence Integration (HAAWAII), Homepage: https://www.haawaii.de (accessed on
4 April 2023)) (as the successor of MALORCA (Machine Learning of Speech Recognition
Models for Controller Assistance (MALORCA), Homepage: https://www.malorca-project.
de (accessed on 4 April 2023)), and STARFiSH (Safety and Artificial Intelligence Speech
Recognition (STARFiSH), Homepage: https://www.dlr.de/fl/desktopdefault.aspx/tabid-
1149/1737_read-74905/ (accessed on 4 April 2023)) tremendously build a base for interop-
erability of systems. Hence, following ASR activities can build on strong shoulders and
reuse the achieved good results and methods of such ABSR projects.

For the specific case of electronic flight strips, eye tracking technology could be of
further help to make sure that ATCos checked the ABSR output [47]. This technology
could also be used to assess the time to recognize and correct an ABSR error (Times to
correct ABSR errors in an ATM environment have been investigated in “Automatic Speech
Recognition and Understanding for Radar Label Maintenance Support Increases Safety
and Reduces Air Traffic Controllers’ Workload” of Helmke et al. presented at the 15th
USA/Europe Air Traffic Management Research and Development Seminar (ATM2023),
Savannah, GA, USA, 5–9 June 2023). Furthermore, the support through callsign highlighting
when recognized from pilot utterances should be investigated and potentially feed attention
guidance systems at the controller working position. To summarize, the validation trials
have shown the potential of using the output of an ABSR system in the multiple remote
tower environment and revealed aspects to be considered when moving forward to higher
technology readiness levels.
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Abbreviations

ABSR Assistant Based Speech Recognition
ACG Austro Control
AIM-s Assessing the Impact on Mental Workload
ASR Automatic Speech Recognition
ATC Air Traffic Control
ATCo Air Traffic Controller
ATIS Automatic Terminal Information Service
ATM Air Traffic Management
BAS Baseline Runs
CARS Controller Acceptance Rating Scale
CoCoLoToCoCo Controller Command Logging Tool for Context Comparison
CPU Central Processing Unit
CWP Controller Working Position
Del Deletions
DLR German Aerospace Center
DTT Digital Tower Technologies
EASA European Union Aviation Safety Agency
EFS Electronic Flight Strip System
EUROCAE European Organization for Civil Aviation Equipment
HMI Human Machine Interface
ICAO International Civil Aviation Organization
Ins Insertions
ISA Instantaneous Self-Assessment
LevenDist Levenshtein Distance
NASA-TLX National Aeronautics and Space Administration Task Load Index
Off Offline (analysis of audio files after the simulation runs)
ON Oro Navigacija
Onl Online (analysis as experienced by ATCos during simulation runs)
OW Overall Weighted Workload
SASHA Situation Awareness for SHAPE
SATI SHAPE Automation Trust Index
SD Standard Deviation
SECT Sequence Effect Compensation Technique
SHAPE Solutions for Human Automation Partnerships in European ATM
SOL Solution Runs
Subs Substitutions
SUS System Usability Scale
TWR Tower
WER Word Error Rate

Appendix A. Speech-To-Text Accuracy

The following tables in this Appendix A show the speech recognition performance
on the word level, i.e., the word error rates (WER). The first row must be read like this;
1,944 words were spoken. Ninety-seven errors occurred, i.e., 43 words were substituted
by another word, 38 words were not recognized at all (deleted), and 16 words were
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inserted, i.e., not said, but a word was recognized. This results in a word error rate of 5.1%
(97/1944).

Table A1. Speech-To-Text performance for offline recognition on audio files (Off).

Sample # Words LevenDist # Subs # Del # Ins % WER
MEAN all 1944 97 43 38 16 5.1
MEAN ON 1966 94 38 36 20 5.0
MEAN ACG 1921 99 48 39 13 5.1
MEAN w/o outlier run 1971 90 40 34 16 4.5
MEAN BAS all 1902 104 46 43 15 5.7
MEAN BAS ON 1891 100 41 43 16 5.7
MEAN BAS ACG 1913 109 51 44 14 5.7
MEAN BAS w/o outlier run 1961 98 44 39 15 5.0
MEAN SOL all 1985 89 40 32 17 4.4
MEAN SOL ON 2041 88 36 30 23 4.3
MEAN SOL ACG 1929 90 44 34 11 4.6
MEAN SOL w/o outlier run 1980 81 36 28 17 4.1

Rows are shaded, when containing all ATCos, i.e., both from ACG and ON.

Table A2. Speech-To-Text accuracy for real-time online recognition from voice stream (Onl).

Sample # Words LevenDist # Subs # Del # Ins % WER
MEAN all 1936 245 46 175 24 13.6
MEAN ON 1954 199 38 140 21 11.9
MEAN ACG 1918 290 54 209 27 15.3
MEAN w/o outlier run 1967 212 41 152 19 11.0
MEAN BAS all 1891 300 54 219 27 17.4
MEAN BAS ON 1871 261 42 196 23 17.1
MEAN BAS ACG 1911 339 66 241 32 17.8
MEAN BAS w/o outlier run 1959 254 50 181 23 13.2
MEAN SOL all 1980 189 38 131 21 9.8
MEAN SOL ON 2037 136 34 83 19 6.8
MEAN SOL ACG 1924 242 42 178 22 12.8
MEAN SOL w/o outlier run 1976 171 32 123 15 8.9

Rows are shaded, when containing all ATCos, i.e., both from ACG and ON.

The following two tables show the frequency of certain words appearing in the gold
transcriptions and the number of unique words needed to reach a certain portion of all
words in the gold transcriptions, respectively.

Table A3. 1-grams of gold transcriptions.

Rank Word Count Portion

1 one 2393 6.43%
2 zero 1479 3.97%
3 tower 1473 3.96%
4 three 1356 3.64%
5 runway 1154 3.10%
6 five 1085 2.91%
7 seven 925 2.48%
8 two 923 2.48%
9 four 898 2.41%
10 to 888 2.38%
11 cleared 808 2.17%
12 right 795 2.13%
13 vilnius 747 2.01%
14 eight 721 1.94%
15 nine 720 1.93%
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Table A3. Cont.

Rank Word Count Portion

16 via 601 1.61%
17 air 571 1.53%
18 degrees 556 1.49%
19 and 539 1.45%
20 knots 531 1.43%
21 bravo 465 1.25%
22 wind 456 1.22%
23 alfa 409 1.10%
24 taxi 408 1.10%
25 kaunas 390 1.05%

others 15,947 42.8%
1-505 SUM 37,238 100%

Table A4. The number of different words needed to reach a certain portion of all uttered words.

Count Portion

61 80%
101 90%
145 95%
283 99%
505 100%

Appendix B. Text-To-Concept Accuracy

The following tables lists the relative frequency of supported air traffic control com-
mand types from the gold annotations.

Table A5. Percentage of used command types in gold annotations occurring more often than 1%
(7560 commands in total).

Command Type Portion of All Commands

STATION 20.2%
INFORMATION WINDSPEED 7.5%
INFORMATION WINDDIRECTION 7.5%
TAXI TO 6.4%
GREETING 5.6%
TAXI VIA 4.8%
AFFIRM 4.0%
INFORMATION QNH 3.3%
CLEARED VIA 2.9%
STARTUP 2.9%
CLEARED TO 2.9%
CLEARED TAKEOFF 2.8%
FAREWELL 2.8%
CLEARED LANDING 2.8%
SQUAWK 2.8%
LINEUP 2.4%
REPORT 1.5%
PUSHBACK 1.4%
INFORMATION ACTIVE_RWY 1.4%
NO_CONCEPT 1.4%
REPORT_MISCELLANEOUS 1.4%
VACATE VIA 1.2%
CLEARED TOUCH_GO 1.1%
others 8.9%
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The following six tables present the speech understanding performance per study subject
group and per command type group for gold, offline, and online transcriptions, respectively.

Table A6. Text-to-concept quality for gold transcriptions (assumed to be 100% correct).

Gold Transcription
Command

Recognition
Rate

Command
Error
Rate

Callsign
Recognition

Rate

Callsign
Error
Rate

Unknown
Classified

Rate

Amount
of

Data

all ATCos ALL 95.9% 2.4% 99.8% 0.2% 13.3% 100.0%

ON ATCos ALL 97.1% 1.5% 99.7% 0.2% 12.5% 49.9%

ACG ATCos ALL 94.8% 3.2% 99.9% 0.1% 14.2% 50.1%

ATCos ALL w/o
outlier run 95.8% 2.5% 99.8% 0.2% 13.2% 91.8%

all ATCos BAS 95.9% 2.4% 99.7% 0.3% 13.8% 49.0%

ON ATCos BAS 97.6% 1.3% 99.7% 0.3% 13.0% 24.1%

ACG ATCos BAS 94.1% 3.5% 99.8% 0.2% 14.7% 24.8%

all ATCos SOL 96.0% 2.3% 99.8% 0.1% 12.8% 51.0%

ON ATCos SOL 96.6% 1.8% 99.7% 0.2% 12.0% 25.8%

ACG ATCos SOL 95.4% 2.9% 100.0% 0.0% 13.7% 25.3%

Table A7. Text-to-concept quality for gold transcriptions (assumed to be 100% correct) per command
type groups.

Command
Type Group

# Command
Types

Command
Recognition Rate

Relevant 34 97.3%

EFS 21 97.4%

Status 18 96.7%

Outside 3 96.0%

Hypo-EFS 4 99.2%

Table A8. Text-to-concept quality for Off transcriptions (current best word error rates of automatic
speech-to-text with callsign boosting on audio files).

Offline
Command

Recognition
Rate

Command
Error
Rate

Callsign
Recognition

Rate

Callsign
Error
Rate

Unknown
Classified

Rate

Amount
of

Data

all ATCos ALL 91.4% 4.5% 98.4% 0.9% 14.0% 100.0%

ON ATCos ALL 92.7% 3.9% 98.6% 0.6% 12.8% 49.9%

ACG ATCos ALL 90.1% 5.1% 98.2% 1.2% 15.2% 50.1%

ATCos ALL w/o outlier run 91.7% 4.4% 98.7% 0.9% 13.9% 91.8%

all ATCos BAS 91.0% 4.6% 98.6% 0.8% 14.5% 49.0%

ON ATCos BAS 92.8% 3.6% 99.0% 0.3% 13.2% 24.1%

ACG ATCos BAS 89.3% 5.5% 98.1% 1.2% 15.8% 24.8%

all ATCos SOL 91.8% 4.5% 98.2% 1.1% 13.6% 51.0%

ON ATCos SOL 92.7% 4.1% 98.1% 0.9% 12.6% 25.8%

ACG ATCos SOL 90.9% 4.8% 98.3% 1.2% 14.6% 25.3%
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Table A9. Text-to-concept quality for Off transcriptions (current best word error rates of automatic
speech-to-text with callsign boosting on audio files) per command type groups.

Command
Type Group

# Command
Types

Command
Recognition Rate

Relevant 31 92.4%

EFS 21 93.4%

Status 18 92.7%

Outside 3 90.5%

Hypo-EFS 4 96.3%

Table A10. Text-to-concept quality for Onl transcriptions (automatic speech-to-text with callsign
boosting from continuous stream).

Online
Command

Recognition
Rate

Command
Error
Rate

Callsign
Recognition

Rate

Callsign
Error
Rate

Unknown
Classified

Rate

Amount
of

Data

all ATCos ALL 79.4% 7.0% 91.7% 3.1% 15.4% 100.0%

ON ATCos ALL 84.2% 5.5% 92.1% 2.4% 13.8% 49.9%

ACG ATCos ALL 74.6% 8.6% 91.3% 3.9% 17.0% 50.1%

ATCos ALL w/o outlier run 81.2% 6.6% 94.0% 2.5% 14.9% 91.8%

all ATCos BAS 75.7% 7.5% 89.1% 3.8% 16.2% 49.0%

ON ATCos BAS 80.1% 5.6% 88.9% 2.8% 14.6% 24.1%

ACG ATCos BAS 71.4% 9.3% 89.3% 4.8% 17.9% 24.8%

all ATCos SOL 82.9% 6.6% 94.2% 2.4% 14.5% 51.0%

ON ATCos SOL 88.0% 5.4% 95.2% 2.0% 13.2% 25.8%

ACG ATCos SOL 77.7% 7.9% 93.2% 2.9% 16.1% 25.3%

Table A11. Text-to-concept quality for Onl transcriptions (automatic speech-to-text with callsign
boosting from continuous stream) per command type groups.

Command
Type Group

# Command
Types

Command
Recognition Rate

Relevant 31 80.7%

EFS 21 79.2%

Status 18 80.0%

Outside 3 81.0%

Hypo-EFS 4 87.2%

Appendix C. Questions and Statements of Questionnaires

The following full-text questions and statements were contained within the listed
post-run questionnaires:

Appendix C.1. Statement and Answer Scale from CARS

The color coding shows worse answers in red and good answers in green.
“Please read the descriptors and score your overall level of user acceptance experienced during

the run. Please check the appropriate number.”
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Appendix C.3. Statements from SASHA Questionnaire

1. In the previous run, I was ahead of the traffic. [AHEAD]
2. In the previous run, I started to focus on a single problem or a specific aircraft.

[FOCUS]
3. In the previous run, there was a risk of forgetting something important (such as

inputting the spoken command values into the labels). [FORGET]
4. In the previous run I was able to plan and organize my work as wanted. [PLAN]
5. In the previous run I was surprised by an event I did not expect (such as an aircraft

call). [SURPRISE]
6. In the previous run I had to search for an item of information. [SEARCH]

Appendix C.4. Questions from NASA-TLX Questionnaire

1. How mentally demanding was the task? [Mental Demand, MD]
2. How physically demanding was the task? [Physical Demand, PD]
3. How hurried or rushed was the pace of the task? [Temporal Demand, TD]
4. How successful were you in accomplishing what you were asked to do? [Operational

Performance, OP]
5. How hard did you have to work to accomplish your level of performance? [Effort, EF]
6. How insecure, discouraged, irritated, stressed, and annoyed were you? [Frustration, FR]

Furthermore, the 15 pairwise comparisons of workload contributing factors have been
analyzed. When looking at the subscores for all six NASA-TLX dimensions, half of them
(three) were rated equal or better in SOL compared to BAS (PD, EF, FR), and the other half
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was rated vice versa (MD, TD, OP). In general, physical demand (PD, 3.3%) was rated as
being a less important contributor to workload, and mental demand (MD, 23.3%) was the
most important contributor to workload. The other four dimensions were rather equally
important contributors to the overall workload (TD 22%, OP 18%, EF 16.7%, FR 16.7%).
The horizontal axis in Figure A1 shows the weight; the area shows the contribution of this
very dimension to the OW of BAS and SOL conditions, respectively.
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Figure A1. ATCo ratings on NASA-TLX (Weighted Workload Factors).

Appendix C.5. Questions from AIM-s Questionnaire

1. In the previous run, how much effort did it take to prioritize tasks? [PRIOT]
2. In the previous run, how much effort did it take to identify potential conflicts?

[IDENT]
3. In the previous run, how much effort did it take to scan radar or any display? [SCRD]
4. In the previous run, how much effort did it take to evaluate conflict resolution options

against the traffic situation and conditions? [EVAL]
5. In the previous run, how much effort did it take to anticipate the future traffic situa-

tion? [ANTIC]
6. In the previous run, how much effort did it take to recognize a mismatch of available

data with the traffic picture? [RECOG]
7. In the previous run, how much effort did it take to issue timely commands? [TIMELY]
8. In the previous run, how much effort did it take to evaluate the consequences of a

plan? [PLAN]
9. In the previous run, how much effort did it take to manage flight data information?

[MANG]
10. In the previous run, how much effort did it take to share information with team

members? [SHARE]
11. In the previous run, how much effort did it take to recall necessary information? [RECL]
12. In the previous run, how much effort did it take to anticipate team members’ needs? [TMN]
13. In the previous run, how much effort did it take to prioritize requests? [PRIRQ]
14. In the previous run, how much effort did it take to scan flight progress data? [SCFP]
15. In the previous run, how much effort did it take to access relevant aircraft or flight

information? [ACCD]
16. In the previous run, how much effort did it take to gather and interpret information? [GETI]

Appendix C.6. Statements from SUS Questionnaire

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
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4. I think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.

Appendix D. Validation Setup Details

The left and right sides of the outside view areas presented current meteorological data
as relevant for aircraft takeoff and landing (see Figure A2), i.e., wind speed in knots (here
10) and wind direction with an additional red arrow (here 070◦) according to the runway
orientation (grey rectangle), the active runway name (here 05), the airport International Civil
Aviation Organization (ICAO) code (EYKA), the QNH (here 1001), the visibility conditions
(here 9999, i.e., no visibility restrictions), and cloud information (in green circles).
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Figure A2. Remote tower outside view with a small aircraft passing a parking aircraft on the apron
and meteorological information in and around the compass rose on the right.

An adjacent laboratory room accommodated three simulation pilot workstations. Each
workstation consisted of a monitor to visualize the simulation pilot interface (see Figure A3)
for one of the three simulated airports, a keyboard, and a mouse.
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Abstract: In this paper we propose a novel virtual simulation-pilot engine for speeding up air traffic
controller (ATCo) training by integrating different state-of-the-art artificial intelligence (AI)-based
tools. The virtual simulation-pilot engine receives spoken communications from ATCo trainees, and
it performs automatic speech recognition and understanding. Thus, it goes beyond only transcribing
the communication and can also understand its meaning. The output is subsequently sent to a
response generator system, which resembles the spoken read-back that pilots give to the ATCo
trainees. The overall pipeline is composed of the following submodules: (i) an automatic speech
recognition (ASR) system that transforms audio into a sequence of words; (ii) a high-level air traffic
control (ATC)-related entity parser that understands the transcribed voice communication; and (iii) a
text-to-speech submodule that generates a spoken utterance that resembles a pilot based on the
situation of the dialogue. Our system employs state-of-the-art AI-based tools such as Wav2Vec 2.0,
Conformer, BERT and Tacotron models. To the best of our knowledge, this is the first work fully based
on open-source ATC resources and AI tools. In addition, we develop a robust and modular system
with optional submodules that can enhance the system’s performance by incorporating real-time
surveillance data, metadata related to exercises (such as sectors or runways), or even a deliberate
read-back error to train ATCo trainees to identify them. Our ASR system can reach as low as 5.5% and
15.9% absolute word error rates (WER) on high- and low-quality ATC audio. We also demonstrate
that adding surveillance data into the ASR can yield a callsign detection accuracy of more than 96%.

Keywords: air traffic controller training; simulation-pilot agent; BERT; automatic speech recognition
and understanding; speech synthesis.

1. Introduction

The exponential advances in artificial intelligence (AI) and machine learning (ML)
have opened the door of automation to many applications. Examples are automatic speech
recognition (ASR) [1] applied to personal assistants (e.g., SIRI® or Amazon’s ALEXA®) and
natural language processing (NLP) and understating [2] for different tasks such as sentiment
analysis [3] and user intent detection [4]. Even though these advances are remarkable, many
applications have lagged behind due to their critical matter, imperative near-to-perfect
performance or simply because the users or administrators only trust the already existing
legacy systems. One clear example is air traffic control (ATC) communications.

In ATC communications, ATCos are required to issue verbal commands to pilots in
order to keep control and safety of a given area of airspace, although there are different
means of communication, such as controller–pilot data link communications (CPDLC).
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CPDLC is a two-way data link system by which controllers can transmit non-urgent
strategic messages to an aircraft as an alternative to voice communications. These messages
are displayed on a flight deck visual display.

Research targeted at understanding spoken ATC communications in the military do-
main can be traced back to the 1970s [5], late 1980s [6], and 1990s [7]. Recent projects are aim-
ing at integrating AI-based tools into ATC processes by developing robust acoustic-based
AI systems for transcribing dialogues. For instance, MALORCA [8,9], HAAWAAI [10] and
ATCO2 [11,12]. These latest projects have shown mature-enough ASR and NLP systems
that demonstrate potential for deployment in real-life operation control rooms. Other fields
of work are voice activity detection (VAD), diarization [13] and ASR [14–16]. In addition, a
few researchers have gone further by developing techniques to understand the ATCo–pilot
dialogues [9,11,17]. However, previous works are mostly disentangled from each other.
Some researchers only focus on ASR [18,19], while a few prior studies have integrated
natural language understanding into their ASR pipelines [14,20].

Another key application that has seen growth in interest is the ATCo training frame-
work. Training ATCos usually involves a human simulation-pilot. The simulation-pilot
responds to or issues a request to the ATCo trainee in order to simulate an ATC communica-
tion with standard phraseology [21]. It is a human-intensive task, where a specialized work-
force is needed during ATCo training and the overall cost is usually high. An example is the
EUROCONTROL’s ESCAPE lite simulator https://www.eurocontrol.int/simulator/escape,
accessed on 12 May 2023) which still requires a human simulation-pilot. In a standard train-
ing scenario, the default simulation-pilots (humans) are required to execute the steps given
by ATCo trainees, as in the case of real pilots (directly introduced to the simulator). The
pilots, on the other hand, update the training simulator, so that the ATCos can see whether
the pilots are following the desired orders. Therefore, this simulation is very close to a
real ATCo–pilot communication. One well-known tool for ATCo training is Eurocontrol’s
ESCAPE simulator. It is an air traffic management (ATM) real-time simulation platform
that supports: (i) airspace design for en-route and terminal maneuvering areas; (ii) the
evaluation of new operational concepts and ATCo tools; (iii) pre-operational validation
trials; and most importantly, (ii) the training of ATCos [22]. In this paper, we develop a
virtual simulation-pilot engine that understands ATCo trainees’ commands and possibly
can replace current simulators based on human simulation-pilots. In practice, the proposed
virtual simulation-pilot can handle simple ATC communications, e.g., the first phase of
the ATCo trainee’s training. Thus, humans are still required for more complex scenarios.
Analogous efforts of developing a virtual simulation-pilot agent (or parts of it) have been
covered in [23,24].

In this paper, we continue our previous work presented at SESAR Innovation Days
2022 [25]. There, a simple yet efficient ‘proof-of-concept’ virtual simulation-pilot was
introduced. This paper formalizes the system with additional ATM-related modules. It
also demonstrates that open-source AI-based models are a good fit for the ATC domain.
Figure 1 contrasts the proposed pipeline (left side) and the current (default) human-based
simulation-pilot (right side) approaches for ATCo training.

Main contributions Our work proposes a novel virtual simulation-pilot system based
on fine-tuning several open-source AI models with ATC data. Our mains contributions are:

• Could human simulation pilots be replaced (or aided) by an autonomous AI-based
system? This paper presents an end-to-end pipeline that utilizes a virtual simulation-
pilot capable of replacing human simulation-pilots. Implementing this pipeline can
speed up the training process of ATCos while decreasing the overall training costs.

• Is the proposed virtual simulation-pilot engine flexible enough to handle multiple
ATC scenarios? The virtual simulation-pilot system is modular, allowing for a wide
range of domain-specific contextual data to be incorporated, such as real-time air
surveillance data, runway numbers, or sectors from the given training exercise. This
flexibility boosts the system performance, while making its adaptation easier to various
simulation scenarios, including different airports.

175



Aerospace 2023, 10, 490

• Are open-source AI-based tools enough to develop a virtual simulation-pilot system?
Our pipeline is built entirely on open-source and state-of-the-art pre-trained AI models
that have been fine-tuned on the ATC domain. The Wav2Vec 2.0 and XLSR [26,27]
models are used for ASR, BERT [28] is employed for natural language understanding
(NLU), and FastSpeech2 [29] is used for the text-to-speech (TTS) module. To the
best of our knowledge, this is the first study that utilizes open-source ATC resources
exclusively [11,30–32].

• Which scenarios can a virtual simulation-pilot handle? The virtual simulation-pilot
engine is highly versatile and can be customized to suit any potential use case. For
example, the system can employ either a male or a female voice or simulate very
high-frequency noise to mimic real-life ATCo–pilot dialogues. Additionally, new rules
for NLP and ATC understanding can be integrated based on the target application,
such as approach or tower control.
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Figure 1. Virtual simulation-pilot pipeline for ATCo training. A traditional ATCo training setup is
depicted on the right side, while our proposed virtual simulation-pilot is on the left side. The pipeline
starts with an ATCo trainee issuing a communication and its capture after the end of the push-to-talk
(PTT) signal, or voice-activity detection if not available. Then, the ASR and high-level entity parser
(NLP) modules transcribe and extract the ATC-related entities from the voice communication. The
output is later rephrased with simulation-pilot grammar. The speech synthesizer uses the generated
text to create a WAV file containing the spoken textual prompt. In the end, a response is generated by
the virtual simulation-pilot that matches the desired read-back.

The authors believe this research is a game changer in the ATM community due to
two aspects. First, a novel modular system that can be adjusted to specific scenarios, e.g.,
aerodrome control or area control center. Second, it is demonstrated that open-source
models such as XLSR [27] (for ASR) or BERT [28] (for NLP and ATC understanding) can be
successfully adapted to the ATC scenario. In practice, the proposed virtual simulation-pilot
engine could become the starting point to develop more inclusive and mature systems
aimed at ATCo training.

The rest of the paper is organized as follows. Section 2 describes the virtual simulation-
pilot system, covering the fundamental background for each of the base (Section 2.1) and
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optional modules (Section 2.2) of the system. Section 3 describes the databases used. Then,
Section 4 covers the experimental setup followed for adapting the virtual simulation-pilot
and the results for each module of the system. Finally, brief future research directions are
provided in Section 5 and the paper is concluded in Section 7.

2. Virtual Simulation-Pilot System

The virtual simulation-pilot system manages the most commonly used commands
in ATC. It is particularly well-suited for the early stages of ATCo training. Its modular
design allows the addition of more advanced rules and grammar to enhance the system’s
robustness. Our goal is to enhance the foundational knowledge and skills of ATCo trainees.
Furthermore, the system can be customized to specific conditions or training scenarios,
such as when the spoken language has a heavy accent (e.g., the case of foreign English) or
when the ATCo trainee is practicing different positions.

In general, ATC communications play a critical role in ensuring the safe and effi-
cient operation of aircraft. These communications are primarily led by ATCos, who are
responsible for issuing commands and instructions to pilots in real-time. The training
process of ATCos involves three stages: (i) initial, (ii) operational, and (iii) continuation
training. The volume and complexity of these communications can vary greatly depending
on factors such as the airspace conditions and seasonal fluctuations, with ATCos often
facing increased workloads during peak travel seasons [25]. As such, ATCo trainees must
be prepared to handle high-stress and complex airspace situations through a combina-
tion of intensive training and simulation exercises with human simulation-pilots [33]. In
addition to mastering the technical aspects of air traffic control, ATCo trainees must also
develop strong communication skills, as they are responsible for ensuring clear and precise
communication with pilots at all times.

Due to the crucial aspect of ATC, efforts have been made to develop simulation in-
terfaces for their training [33–35]. Previous works includes optimization of the training
process [36], post-evaluation of each training scenario [37,38], and virtual simulation-pilot
implementation, for example, a deep learning (DL)-based implementation [39]. In [24], the
authors use sequence-to-sequence DL models to map from spoken ATC communications
to high-level ATC entities. They use the well-known Transformer architecture [40]. Trans-
former is the base of the recent, well-known encoder–decoder models for ASR (Wav2Vec
2.0 [26]) and NLP (BERT [28]). The subsections address in more detail each module that is
a part of the virtual simulation-pilot system.

2.1. Base Modules

The proposed virtual simulation-pilot system (see Figure 1) is built with a set of
base modules, and possibly, optional submodules. The most simple version of the engine
contains only the base modules.

2.1.1. Automatic Speech Recognition

Automatic speech recognition (ASR) or speech-to-text systems convert speech to text.
An ASR system uses an acoustic model (AM) and a language model (LM). The AM repre-
sents the relationship between a speech signal and phonemes/linguistic units that make
up speech and is trained using speech recordings along with their corresponding text. The
LM provides a probability distribution over a sequence of words, provides context to dis-
tinguish between words and phrases that sound similar and is trained using a large corpus
of text data. A decoding graph is built as a weighted finite state transducer (WFST) [41–43]
using the AM and LM that generates text output given an observation sequence. Standard
ASR systems rely on a lexicon, LM and AM, as stated above. Currently, there are two main
ASR paradigms, where different strategies, architectures and procedures are employed for
blending all these modules in one system. The first is hybrid-based ASR, while the second is
a more recent approach, termed end-to-end ASR. A comparison of both is shown in Figure 2.
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Figure 2. Traditional hybrid-based and more recent end-to-end automatic speech recognition systems.
These systems take an ATCo voice communication as input and then produce transcripts as output.
The dotted blocks refer to modules that are optional. For instance, surveillance data or other types of
data (e.g., sector or waypoints) can be added to increase the overall performance of the system.

Hybrid-Based Automatic Speech Recognition. ASR with hybrid systems is based
on hidden Markov models (HMM) and deep neural networks (DNN) [44]. DNNs are
an effective module for estimating the posterior probability of a given set of possible
outputs (e.g., phone-state or tri-phone-state probability estimator in ASR systems). These
posterior probabilities can be seen as pseudo-likelihoods or “scale likelihoods”, which can
be interfaced with HMM modules. HMMs provide a structure for mapping a temporal
sequence of acoustic features, X, e.g., Mel-frequency cepstral coefficients (MFCCs), into
a sequence of states [45]. Hybrid systems remain one of the best approaches for building
ASR engines based on lattice-free maximum mutual information (LF-MMI) [46]. Currently,
HMM-DNN-based ASR is the state-of-the-art system for ASR in ATC domain [15].

Recent work in ASR has targeted different areas in ATC. For instance, a benchmark for
ASR on ATC communications databases is established in [47]. Leveraging non-transcribed
ATC audio data using semi-supervised learning has been covered in [48,49] and using
self-supervised learning for ATC in [18]. The previous work related to the large-scale
automatic collection of ATC audio data from different airports worldwide is covered
in [15,50]. Additionally, innovative research aimed at improving callsign recognition by
integrating surveillance data into the pipeline is covered by [10,12]. ASR systems are
also employed for more high-level tasks such as pilot report extractions from very-high
frequency (VHF) communications [51]. Finally, multilingual ASR has also been covered in
ATC applications in [19].

The main components of a hybrid system are a pronunciation lexicon, LM and AM.
One key advantage of a hybrid system versus other ASR techniques is that the text data
(e.g., words, dictionary) and pronunciation of new words are collected and added before-
hand, hoping to match the target domain of the recognizer. Standard hybrid-based ASR
approaches still rely on word-based lexicons, i.e., missing or out-of-vocabulary words from
the lexicon cannot be hypothesized by the ASR decoder. The system is composed of an
explicit acoustic and language model. A visual example of hybrid-based ASR systems is in
the bottom panel of Figure 2. Most of these systems can be trained with toolkits such as
Kaldi [52] or Pkwrap [53].

End-to-End Automatic Speech Recognition. End-to-end (E2E) systems are based on
a different paradigm compared to hybrid-based ASR. E2E-ASR aims at directly transcribing
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speech to text without requiring alignments between acoustic frames (i.e., input features)
and output characters/words, which is a necessary separate component in standard hybrid-
based systems. Unlike the hybrid approach, E2E models are learning a direct mapping
between acoustic frames and model label units (characters, subwords or words) in one step
toward the final objective of interest.

Recent work on encoder–decoder ASR can be categorized into two main approaches:
connectionist temporal classification (CTC) [54] and attention-based encoder–decoder
systems [55]. First, CTC uses intermediate label representation, allowing repetitions of
labels and occurrences of ‘blank output’, which labels an output with ‘no label’. Second,
attention-based encoder–decoder or only-encoder models directly learn a mapping from the
input acoustic frames to character sequences. For each time step, the model emits a character
unit conditioned on the inputs and the history of the produced outputs. The important
lines of work for E2E-ASR can be categorized as self-supervised learning [56–58] for speech
representation, covering bidirectional models [26,59] and autoregressive models [60,61].

Moreover, recent innovative research on E2E-ASR for the ATC domain is covered
in [62]. Here, the authors follow the practice of fine-tuning a Wav2Vec 2.0 model [26]
with public and private ATC databases. This system reaches on-par performances with
hybrid-based ASR models, demonstrating that this new paradigm for ASR development
also performs well in the ATC domain. In E2E-ASR, the system encodes directly an acoustic
and language model, and it produces transcripts in an E2E manner. A visual example of an
only-encoder E2E-ASR system is in the top panel of Figure 2.

2.1.2. Natural Language Understanding

Natural language understanding (NLU) is a field of NLP that aims at reading com-
prehension. In the field of ATC, NLU is related to intent detection and slot filling. The
slot-filling task is akin to named entity recognition (NER). In intent detection, the com-
mands from the communication are extracted, while slot filling refers to the values of these
commands and callsigns. Furthermore, throughout the paper, the system that extracts
the high-level ATC-related knowledge from the ASR outputs is called a high-level entity
parser system. The NER-based understanding of ATC communications has been previously
studied in [11,23,24], while our earlier work [25] includes the integration of named-entity
recognition (NER) into the virtual simulation-pilot framework.

The high-level entity parser system is responsible for identifying, categorizing and ex-
tracting crucial keywords and phrases from ATC communications. In NLP, these keywords
are classified into pre-defined categories such as parts of speech tags, locations, organi-
zations or individuals’ names. In the context of ATC, the key entities include callsigns,
commands and values (which includes units, e.g., flight level). For instance, consider the
following transcribed communication (taken from Figure 3):

ASR transcript: ryanair nine two bravo quebec turn right heading zero nine zero,

would be parsed to high-level ATC entity format:

Output: <callsign> ryanair nine two bravo quebec </callsign> <command> .. . . . .turn . . . . . . .right

. . . . . . . . . .heading </command> <value>
:::
zero

:::::
nine

::::
zero </value>.

The previous output is then used for further processing tasks, e.g., generating a
simulation-pilot-like response, metadata logging and reporting, or simply to help ATCos in
their daily tasks. Thus, NLU is mostly focused on NER [63]. Initially, NER relied on the
manual crafting of dictionaries and ontologies, which led to complexity and human error
when scaling to more entities or adapting to a different domain [64]. The advancement
of ML-based methods for text processing, including NER, has been introduced by [65].
The previous work [66] continued to advance NER techniques. A high-level entity parser
system (such as ours) can be implemented by fine-tuning a pre-trained LM for the NER
task. Currently, state-of-the-art NER models utilize pre-trained LMs such as BERT [28],
RoBERTa [67] or DeBERTa [68]. For the proposed virtual simulation-pilot, we use a fine-
tuned BERT on ATC text data.
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Figure 3. Detailed outputs of the main ML-based submodules of our proposed simulation-pilot
system. It includes pre-processing from the input audio stream, speaker role detection by push-to-talk
(PTT) signal, transcript generation and callsign/command/value extraction with the high-level entity
with ASR and NER modules, respectively. All the data are later aggregated, packaged and sent to
the response generator and TTS module. Note that these data can also be logged into a database for
control and recording. Figure adapted from our previous work [25].

2.1.3. Response Generator

The response generator (RG) is a crucial component of the simulation-pilot agent. It
processes the output from the high-level entity parser system, which includes the callsign,
commands and values uttered by the ATCo, and then later generates a spoken response.
The response is then delivered in the form of a WAV file, which is played through the
headphones of the ATCo trainee. Additionally, the response, along with its metadata, can be
stored for future reference and evaluation. The RG system is designed to generate responses
that are grammatically consistent with what a standard simulation-pilot (or pilot) would
say in response to the initial commands issued by the ATCo. The RG system comprises
three submodules: (i) grammar conversion, (ii) a word fixer (e.g., ATCo-to-pilot phrase
fixer), and (iii) text-to-speech, also known as a speech synthesizer. A visual representation
of the RG system split by submodules is in Figure 4.

Grammar Conversion Submodule. A component designed to generate the response
of the virtual simulation-pilot. First, the output of the high-level entity parser module
(discussed in Section 2.1.2) is input to the grammar conversion submodule. At this stage, the
communication knowledge has already been extracted, including the callsign, commands
and their values. This is followed by a grammar-adjustment process, where the order of the
high-level entities is rearranged. For example, we take into account the common practice of
pilots mentioning the callsign at the end of the utterance while ATCos mention it at the
beginning of the ATC communication. Thus, our goal is to align the grammar used by the
simulation-pilot with the communication style used by the ATCo. See the first left panel in
Figure 4.

Word Fixer Submodule. This is a crucial component of the virtual simulation-pilot
system that ensures that the output from the response generator aligns with the standard
ICAO phraseology. This is achieved by modifying the commands to match the desired
response based on the input communication from the ATCo. The submodule applies
specific mapping rules, such as converting descend→ descending or turn→ heading, to make
the generated reply as close to standard phraseology as possible. Similar efforts have been
covered in a recent study [39] where the authors propose a copy mechanism that copies
the key entities from the ATCo communication into the desired response of the virtual
simulation-pilot, e.g., maintain→ maintaining. In real-life ATC communication, however,
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the wording of ATCos and pilots slightly differs. Currently, our word fixer submodule
contains a list of 18 commands but can be easily updated by adding additional mapping
rules to a rules.txt file. This allows the system to adapt to different environments, such as
aerodrome control, departure/approach control or area control center. The main conversion
rules used by the word fixer submodule are listed in Table 1. The ability to modify and
adapt the word fixer submodule makes it a versatile tool for training ATCos to recognize
and respond to standard ICAO phraseology. See the central panel in Figure 4.

Text-to-Speech Submodule. Speech synthesis, also referred to as text-to-speech (TTS),
is a multidisciplinary field that combines various areas of research such as linguistics,
speech signal processing and acoustics. The primary objective of TTS is to convert text
into an intelligible speech signal. Over the years, numerous approaches have been devel-
oped to achieve this goal, including formant-based parametric synthesis [69], waveform
concatenation [70] and statistical parametric speech synthesis [71]. In recent times, the
advent of deep learning has revolutionized the field of TTS. Models such as Tacotron [72]
and Tacotron2 [73] are end-to-end generative TTS systems that can synthesize speech
directly from text input (e.g., characters or words). Most recently, FastSpeech2 [29] has
gained widespread recognition in the TTS community due to its simplicity and efficient
non-autoregressive manner of operation. Finally, TTS is a complex field that draws on a
variety of areas of research and has made significant strides recently, especially with the
advent of deep learning. For a more in-depth understanding of the technical aspects of TTS
engines, readers are redirected to [74] and novel diffusion-based TTS systems in [75]. The
TTS system for ATC is depicted in the right panel in Figure 4.

Text-to-speech SubmoduleWord Fixer SubmoduleGrammar Conversion Submodule

CallsignCommand Values

Rule-based

Callsign Command Values

rules.txt

Rule-based

turn 

direct to 

heading

heading 

proceeding 

heading

TTS system

nine zero degrees ryan air

nine two bravo quebec

Figure 4. Detailed submodules of the response generator.

Table 1. Word-fixing rules. The rules are used to convert ATCos input communications into a virtual
simulation-pilot response.

Word Fixer Submodule—Rules.txt
Horizontal commands Handover commands

continue heading→ continuing altitude contact tower→ contact tower
heading→ heading station radar→ station radar
turn→ heading squawk→ squawk
turn by→ heading squawking→ squawk
direct to→ proceeding direct contact frequency→ NONE

Level commands Speed commands
maintain altitude→maintaining altitude reduce→ reducing
maintain altitude→maintain maintain speed→maintaining
descend→ descending reduce speed→ reduce speed
climb→ climbing speed→ NONE

2.2. Optional Modules

In contrast to the base modules, covered in Section 2.1, the optional modules are blocks
that can be integrated into the virtual simulation-pilot to enhance or add new capabilities.
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An example is the PTT (push-to-talk) signal. In some cases a PTT signal is not available;
thus, voice activity detection can be integrated. Below, each of the proposed optional
modules is covered in more detail.

2.2.1. Voice Activity Detection

Voice activity detection (VAD) is an essential component in standard speech-processing
systems to determine which portions of an audio signal correspond to speech and which
are non-speech, i.e., background noise or silence. VAD can be used for offline purpose
decoding, as well as for online streaming recognition. The offline VAD is used to split
a lengthy audio into shorter segments that can then be used for training or evaluating
ASR or NLU systems. The online VAD is particularly crucial for ATC ASR when the PTT
signal is not available. An example of an online VAD is the WebRTC (developed by Google
https://webrtc.org/, accessed on 12 May 2023). In ATC communications, VAD is used to
filter out the background noise and keep only the speech segments that carry the ATCo’s
(or pilot’s) voice messages. One of the challenges for VAD in ATC communications is the
presence of a high level of background noise. The noise comes from various sources, e.g.,
the engines of aircraft, wind or even other ATCos. ATC communications can easily have
signal-to-noise (SNR) ratios lower than 15 dB. If VAD is not applied (and there is not a PTT
signal available), the ASR system may degrade the accuracy of speech transcription, which
may result in incorrect responses from the virtual simulation-pilot agent.

VAD has been explored before in the framework of ATC [76]. A general overview of
recent VAD architecture and research directions is covered in [77]. Some other researchers
have targeted how to personalize VAD systems [78] and how this module plays its role in
the framework of diarization [79]. There are several techniques used for VAD, ranging from
traditional feature-based models to hidden Markov models to Gaussian mixture-based
models [80]. On the other hand, machine-learning-based models have proven to be more
accurate and robust, particularly deep neural network-based methods. These techniques
can learn complex relationships between the audio signal and speech and can be trained
on large annotated datasets. For instance, convolutional and deep-neural-network-based
VAD has received much interest [76]. VAD can be used in various stages of the ATC
communication pipeline. VAD can be applied at the front-end of the ASR system to pre-
process the audio signal and reduce the processing time of the ASR system. Figures 1 and 2
depict where a VAD module can be integrated into the virtual simulation-pilot agent.

2.2.2. Contextual Biasing with Surveillance Data

In order to enhance the accuracy of an ASR system’s predictions, it is possible to
use additional context information along with speech input. In the ATC field, radar data
can serve as context information, providing a list of unique identifiers for aircraft in the
airspace called “callsigns”. By utilizing these radar data, the ASR system can prioritize the
recognition of these registered callsigns, increasing the likelihood of correct identification.
Callsigns are typically a combination of letters, digits and an airline name, which are
translated into speech as a sequence of words. The lattice, or prediction graph, can be
adjusted during decoding by weighting the target word sequences using the finite state
transducer (FST) operation of composition [12]. This process, called lattice rescoring,
has been found to improve the recognition accuracy, particularly for callsigns. Multiple
experiments using ATC data have demonstrated the effectiveness of this method, especially
in improving the accuracy of callsign recognition. The results of contextual biasing are
presented and discussed below in Section 4.1.

Re-ranking module based on Levenshtein distance. The high-level entity parser
system for NER (see Section 2.1.2) allows us to extract the callsign from a given transcript or
ASR 1-best hypotheses. Recognition of this entity is crucial where a single error produced
by the ASR system affects the whole entity (normally composed of three to eight words).
Additionally, speakers regularly shorten callsigns in the conversation, making it impossible
for an ASR system to generate the full entity (e.g., ‘three nine two papa’ instead of ‘austrian
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three nine two papa’, ‘six lima yankee’ instead of ‘hansa six lima yankee’). One way to overcome
this issue is to re-rank the entities extracted by the high-level entity parser system with the
surveillance data. The output of this system is a list of tags that match words or sequences
of words in an input utterance. As our only available source of contextual knowledge is
callsigns registered at a certain time and location, we extract callsigns with the high-level
entity parser system and discard other entities. Correspondingly, each utterance has a
list of callsigns expanded into word sequences. As input, the re-ranking module takes
(i) a callsign extracted by the high-level entity parser system and (ii) an expanded list
of callsigns. The re-ranking module compares a given n-gram sequence against a list of
possible n-grams and finds the closest match from the list of surveillance data based on
the weighted Levenshtein distance. In order to use contextual knowledge, it is necessary to
know which words in an utterance correspond to a desired entity (i.e., a callsign), which is
why it is necessary to add into the pipeline the high-level entity parser system. We skip
the re-ranking in case the output is a ‘NO_CALLSIGN’ flag (no callsign recognized).

2.2.3. Read-Back Error-Insertion Module

The approach of using the virtual simulation-pilot system can be adapted to meet
various communication requirements in ATC training. This includes creating a desirable
read-back error (RBE), which is a plausible scenario in ATC, where a pilot or ATCo misreads
or misunderstands a message [81]. By incorporating this scenario in ATCos’ training, they
can develop the critical skills for spotting these errors. This is a fundamental aspect of
ensuring the safety and efficiency of ATM [82]. The ability to simulate (by inserting a desired
error) and practice these scenarios through the use of the virtual simulation-pilot system
offers a valuable tool for ATCo training and can help to improve the overall performance of
ATC. An example could look like: ATCo: turn right→ Pilot (RBE): turning left.

The structure of the generated RBE could depend on the status of the exercise, for
instance, whether the ATCo trainee is in the aerodrome control or approach/departure
control position. These positions should, in the end, change the behavior of this optional
module. The proposed, optional RBE insertion module is depicted in Figure 5.

Read-back Insertion Pipeline

High-level

entity Parser

turning left nine zero degrees

ryanair nine two bravo quebec

turning right nine zero degrees

ryanair nine two bravo quebec

Read-back error

insertion module

rules.txt

ryanair nine two bravo quebec

turn right heading zero nine zero

Figure 5. Read-back insertion module. At first, an input transcribed communication is sent to the
high-level entity parser in order to extract the knowledge, i.e., callsign, commands and values. Later,
with a defined probability, a desired read-back error can be inserted

3. Datasets

This section describes the public databases used for training and evaluating the
different modules of our virtual simulation-pilot system. In addition, Table 2 summarizes
well-known private and public ATC-related databases [83]. Our goal is to conduct a
thorough and comprehensive study on the use of virtual simulation-pilots in ATC. To
ensure the reproducibility of our research, we use either only open-source databases or a
combination of these and private databases during the training phase of our base models.
The exception is the TTS module. The TTS system is a pre-trained out-of-the-box module
downloaded from HuggingFace (the TTS is part of the response generator). Despite this,
we aim at demonstrating the potential of the virtual simulation pilot in a more realistic
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setting. Hence, the system is also evaluated on highly challenging private databases that
the authors have access to. These databases cover real-life ATC communications, which
might contain high levels of background or cockpit noise. The results achieved in this work
can provide a better idea of the performance of our approach in practical applications,
while also highlighting its strengths and weaknesses in a real-world scenario. In any case,
our focus remains on ensuring that our research is thoroughly documented and that it can
be easily replicated by other researchers in the ATC and ATM field.

3.1. Public Databases

LDC-ATCC corpus: The air traffic control corpus (ATCC) (available for download
in: https://catalog.ldc.upenn.edu/LDC94S14A, accessed on 12 May 2023) consists of
recorded speech initially designed for research on ASR. Here, the metadata is also used for
NLU research, e.g., speaker role detection. The audio data contain voice communication
traffic between various ATCos and pilots. The audio files are sampled at 8 kHz, 16-bit
linear, representing continuous monitoring without squelch or silence elimination. Each
file has a single frequency over one to two hours of audio. The corpus contains gold
annotations and metadata. The metadata cover voice activity segmentation details, speaker
role information (who is talking) and callsigns in ICAO format. In addition, the corpus
consists of approximately 25 h of ATCo and pilot transmissions (after VAD).

UWB-ATCC corpus: The UWB-ATCC corpus (released by the University of West
Bohemia, see: https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-00
00-0001-CCA1-0, accessed on 12 May 2023) is a free and public resource for research on
ATC. It contains recordings of communication between ATCos and pilots. The speech is
manually transcribed and labeled with the speaker information, i.e., pilot/controller. The
total amount of speech after removing silences is 13 h. The audio data are mono-channel
sampled at 8 kHz and 16-bit PCM.

ATCO2 corpus: The dataset was built for the development and evaluation of ASR
and NLP technologies for English ATC communications. The dataset consists of English
coming from several airports worldwide (e.g., LKTB, LKPR, LZIB, LSGS, LSZH, LSZB,
YSSY). We used this corpus twofold. First, we employed up to 2500 h of audio data of the
official pseudo-annotated set (see more information in [11]) for training our ASR systems;
this training set is labeled ATCO2-PL set corpus. It is worth mentioning that the transcripts
of the ATCO2 training corpus were automatically generated by an ASR system. Despite
this, recent work has shown its potential to develop robust ASR systems for ATC from
scratch, e.g., [11]. Second, for completeness, we use the two official partitions of the ATCO2
test set, namely, the ATCO2 test set 1h corpus and the ATCO2 test set 4h corpus, as evaluation
sets. The first corpus contains 1.1 h of open-source transcribed annotations, and it can be
accessed for free at: https://www.atco2.org/data (accessed on 12 May 2023). The latter
contains ∼3 h of extra annotated data, and the full corpus is available for purchase through
ELDA at: http://catalog.elra.info/en-us/repository/browse/ELRA-S0484 (accessed on 12
May 2023). The recordings are mono-channel sampled at 16 kHz and 16-bit PCM.

ATCOSIM corpus: This is a free public database for research on ATC communications.
It comprises 10 h of speech data recorded during real-time ATC simulations using a close-
talk headset microphone. The utterances are in the English language and pronounced
by ten non-native speakers. The speakers are split by gender. Even though we do not
pursue this direction, the ATCOSIM corpus can be used for the development or adaptation
of already-existing TTS systems to ATC with voices from different genders, i.e., males or
females. ATCOSIM also includes orthographic transcriptions and additional information
about the speakers and recording sessions [32]. This dataset can be accessed for free at:
https://www.spsc.tugraz.at/databases-and-tools (accessed on 12 May 2023).
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Table 2. Air traffic control communications-related databases. ? abbreviation in IETF format. † re-
search directions that can be explored based on the annotations provided by the dataset. †† ASR and
TTS are interchangeable; the same annotations of each recording can be used to fine-tune or train
a TTS module. § denotes datasets that contain annotations on the callsign or/and command level.
SpkID: Speaker role identification.

Characteristics Research Topics † Other
Database Accents ? Hrs ASR/TTS †† SpkID NLU § License Ref.

Private databases
MALORCA cs, de 14 X X X % [48]
AIRBUS fr 100 X - X % [83]
HAAWAII is, en-GB 47 X X X % [62]
Internal several 44 X % % % -

Public databases
ATCOSIM de, fr, de-CH 10.7 X % % X [32]
UWB-ATCC cs 13.2 X X % X [31]
LDC-ATCC en-US 26.2 X X X X [30]
HIWIRE fr, it, es, el 28.7 X % % X [84]
ATCO2 several 5285 X X X X [11]

3.2. Private Databases

MALORCA corpus: MAchine Learning Of speech Recognition models for Controller
Assistance: http://www.malorca-project.de/wp/ (accessed on 12 May 2023). This dataset
is based on a research project that focuses to propose a general, cheap and effective solution
to develop and automate speech recognition for controllers using the speech data and
contextual information. The data collected are mainly from the Prague and Vienna airports,
which is around 14 h. The data are split into training and testing sets with a split amount of
10 h and 4 h (2 h from each airport), respectively.

HAAWAII corpus: Highly Advanced Air Traffic Controller Workstation with Artificial
Intelligence Integration: https://www.haawaii.de (accessed on 12 May 2023): This dataset
is based on an exploratory research project that aims to research and develop a reliable and
adaptable solution to automatically transcribe voice commands issued by both ATCos and
pilots. The controller and pilot conversations are obtained from two air navigation service
providers (ANSPs): (i) NATS for London approach and (ii) ISAVIA for Icelandic en route.
The total amount of manually transcribed data available is around 47 h (partitioned into
43 h for training and 4 h for testing). The 4 h test set is taken—2 h each—from both London
and Iceland airports. Similar to another corpus, the audio files are sampled at 8 kHz and
16-bit PCM. This corpus is only used as an out-of-domain dataset; thus, we only report the
results on the ASR level.

Internal data: In addition to the above-mentioned datasets, we have data from some
industrial research projects that amount to a total duration of 44 h of speech recordings of
ATCos and pilots along with their manual transcripts.

4. Experimental Setup and Results

In this section, we present the experimental results for some modules described in
Section 2. These modules are trained with the datasets from Section 3. Note that not all
datasets are used during the training and testing phases.

4.1. Automatic Speech Recognition

This subsection list the results related to ASR, previously covered in Section 2.1.1. We
analyze (i) the three proposed ASR architectures, (ii) the training datasets used during the
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training phase, and (iii) the experimental setup and results obtained on different public
and private test sets.

4.1.1. Architectures

The results of ASR are split in two. First, we evaluate hybrid-based ASR models,
which are the default in current ATC-ASR research [8,9]. Second, we train ASR models with
state-of-the-art end-to-end architectures, e.g., Transformer-based [27,40] and Conformer-
based [85]. The experimental setup and results analysis (below) for each proposed model
refers to the results from Table 3.

Hybrid-based ASR: For the hybrid-based ASR experiments, we use conventional
biphone convolutional neural network (CNN) [86] + TDNN-F [46]-based acoustic models
trained with the Kaldi [52] toolkit (i.e., nnet3 model architecture). The AMs are trained
with the LF-MMI training framework, considered to produce a state-of-the-art performance
for hybrid ASR. In all the experiments, 3-fold speed perturbation with MFCCs and i-vector
features is used. The LM is trained as a statistical 3-gram model using manual transcripts.
Previous work related to ATC with this architecture is in [11,15].

XLSR-KALDI ASR: In [87], the authors propose to use the LF-MMI criterion (similar
to hybrid-based ASR) for the supervised adaptation of the self-supervised pre-trained
XLSR model [27]. They also show that this approach outperforms the models trained
with only the supervised data. Following that technique, we use the XLSR [27] model
pre-trained with a dataset as large as 50 k h of speech data, and later we fine-tune it with the
supervised ATC data using the LF-MMI criterion. Further details about the architecture and
experimental setup for pre-training the XLSR model can be found in the original paper [27].
The results for this model are in the row tagged as ‘XLSR-KALDI’ in Table 3.

End-to-End ASR: We use the SpeechBrain [88] toolkit to train a Conformer [85] ASR
model with ATC audio data. The Conformer model is composed of 12 encoder layers and an
additional 4 decoder layers (transformer-based [40]). We reuse the Conformer-small recipe
from LibriSpeech [89] and adapt it to the ATC domain. See the recipe at: https://github.
com/speechbrain/speechbrain/tree/develop/recipes/LibriSpeech/ASR/transformer (ac-
cessed on 12 May 2023). The dimension of the encoder and decoder model is set to
dmodel = 144 with d f f n = dmodel ∗ 4. This accounts for a total of 11M parameters. We use
dropout [90] with a probability of dp = 0.1 for the attention and hidden layers, while
Gaussian error linear units (GELU) is used as the activation function [91]. We use the
Adam [92] optimizer with an initial learning rate of γ = 1e−3. We also use the default dy-
namic batching, which speeds up the training. During training, we combine the per-frame
conformer decoder output and CTC probabilities [93]. The CTC loss [94] is weighted by
α = 0.3. During inference and evaluation, the beam size is set to 66 with a CTC weight of
ctcw = 0.4.

4.1.2. Training and Test Data

Training data configuration: To see the effectiveness of using automatically tran-
scribed data, as well as comparing the performance on the in-domain VS out-of-domain
sets, we train both the hybrid (CNN-TDNNF) and E2E (Conformer) models twice. First, we
employ a mix between public and private supervised (recordings with gold annotations)
ATC resources, which comprises around 190 h. We tag these models as scenario (a)—only
supervised data. Second, we use a subset of 500 h of pseudo-annotated recordings (a seed
ASR system is used to transcribe the ATC communications from different airports) from
the open-source ATCO2-PL set corpus (see introductory paper [11]). We tag this model
as scenario (b)—only ATCO2-PL 500 h data. The results referencing both scenarios are in
Tables 3 and 4.

Test data configuration: Six different test sets are used for ASR evaluation, as shown
in Table 3. The first four test sets (highlighted in orange) are private and the last two test
sets (highlighted in blue) are open data. Each two consecutive test sets are taken from one
project: (i) NATS and ISAVIA are part of the HAAWAII corpus, (ii) Prague and Vienna are
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part of the MALORCA corpus, and (iii) ATCO2-1h and ATCO2-4h are from the ATCO2
project. Each dataset, along with the test split, is described in Section 3. We aimed at
evaluating how the model’s architecture, training paradigm (hybrid-based and E2E-ASR)
and training data directly affect the performance of ASR.

4.1.3. Evaluation Metric

The preeminent technique for evaluating the efficacy of an ASR system is the word
error rate (WER). This metric entails a meticulous comparison between the transcription
of an utterance and the word sequence hypothesized by the ASR model. The WER is
determined by computing the aggregate of three types of errors, specifically, substitutions
(S), insertions (I) and deletions (D), over the total count of words within the transcription.
Should the reference transcript comprise N words, the WER can be computed using
Equation (1), outlined below.

WER =
I + D + S

N
× 100. (1)

We evaluate all the models from Tables 3 and 4 with WERs. For the boosting experiments
(see Section 2.2.2 and Table 4) we additionally use EntWER, which evaluates WER only
on the callsign word sequence, and ACC, which evaluates the accuracy of the system in
capturing the target callsign in ICAO format.

4.1.4. Speech Recognition Results

The results of all the compared ASR models are in Table 3.
CNN-TDNNF model: This is our default architecture, as it has already been shown

to work properly on the ATC domain. It has also been used largely in prior ATC work,
such as ATCO2, HAAWAII and MALORCA (see Section 1). In our experiments, we
trained this model for both scenario (a) and scenario (b). Not surprisingly, we noted that
the WERs are heavily impacted by the training and testing data. If we compare CNN-
TDNNF scenario (a) VS scenario (b), we see a systematic drop in performance for NATS
(7.5% WER→ 26.7% WER) and ISAVIA (12.4% WER→ 34.1% WER). However, in Prague
and Vienna, which are still out-of-domain for scenario (b), less degradation in WERs is
seen: 6.6% WER→ 11.7% WER for Prague and 6.3% WER→ 11.8% WER for Vienna.

XLSR-KALDI model: As mentioned earlier, we fine-tune the XLSR model (pre-trained
based on wav2vec 2.0 [26]) with the supervised data from scenario (a). We do this as a proof
of concept. The results show that the performance is consistent over all the private test sets
compared to the CNN-TDNNF model trained with the same data. Though the model has
not seen the noisy ATCO2 data during fine-tuning, since this model is pre-trained with
large amounts of data, the WER on the ATCO2 test sets significantly improves compared to
the CNN-TDNNF model. We see an absolute improvement of 9.4% (27.4%→ 18%) and
10.9% (36.6%→ 25.7%) for the ATCO2-1h and ATCO2-4h test sets, respectively.

Conformer model: We evaluate Conformer [85], an encoder–decoder Transformer-
based [40] model. With the Conformer architecture, we again train two models: on su-
pervised data (scenario (a)) and on the 500 h ATCO2-PL set (scenario (b)). Both are tagged
as CONFORMER in Table 3. Likewise, for CNN-TDNNF models, the first four test sets
are deemed in-domain for the baseline model, whereas the last two test sets (ATCO2-1h
and ATCO2-4h test sets) are considered out-of-domain. Conversely, the second model is
optimized for the out-of-domain test sets, while the first four are considered out-of-domain.
Our goal is to demonstrate the effectiveness of the ATCO2-PL dataset as an optimal resource
for training models when only limited in-domain data are available. The second model
demonstrates competitive performance when tested on close-mic speech datasets such as
Prague and Vienna, which exclusively use the ATCo recordings. Yet, the model’s perfor-
mance deteriorates on more complex datasets, such as NATS and ISAVIA, which include
pilot speech. We also note significant improvements on the ATCO2-1h and ATCO2-4h test
sets when training with the ATCO2-PL dataset. Scenario (b) exhibits a 62% and 48% relative
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WER reduction compared to scenario (a) on ATCO2-1h and ATCO2-4h, respectively. In
contrast, the first model performed poorly on both: 41.8 and 46.2% WER, respectively. A
critical consideration arises when examining the performance of the Conformer and CNN-
TDNNF models under the same training scenario, scenario (b). Notably, the Conformer
model outperforms the CNN-TDNNF model across all datasets, except for the Vienna test
set. This leads us to hypothesize that the Conformer architecture shows greater proficiency
when being trained over extensive datasets when compared to the CNN-TDNNF model in
this particular scenario.

Table 3. WER for various public and private test sets with different ASR engines. The top results per
block are highlighted in bold. The best result per test set is marked with an underline. ‡ datasets
from HAAWAII corpus and †datasets from MALORCA project [8].

Model Test Sets
NATS ‡ ISAVIA ‡ Prague † Vienna † ATCO2-1h ATCO2-4h
scenario (a)—only supervised data

CNN-TDNNF 7.5 12.4 6.6 6.3 27.4 36.6
XLSR-KALDI 7.1 12.0 6.7 5.5 18.0 25.7
CONFORMER 9.5 13.7 5.7 7.0 41.8 46.2

scenario (b)—only ATCO2-PL 500 h data
CNN-TDNNF 26.7 34.1 11.7 11.8 19.1 25.1
CONFORMER 21.6 32.5 7.6 12.5 15.9 24.0

Callsign boosting with surveillance data (≈contextual biasing): The contextual bi-
asing approach is introduced in Section 2.2.2. Table 4 demonstrates the effect of callsign
boosting on the NATS test set (part of HAAWAII). The results of two ASR models are
compared. Both models have the same architecture (Kaldi CNN-TDNNf) but are trained
on different data. The first scenario (a), as in the experiments above, is trained on a combi-
nation of open-source and private annotated ATC databases that includes in-domain data
(NATS); the second scenario (b) is trained on the 500 hours of automatically transcribed
data collected and prepared for the ATCO2 project, which is out-of-domain data. As ex-
pected, the in-domain model performs better on the NATS dataset. At the same time, for
both models, we can see a considerable improvement when contextual biasing is applied.
The best results are achieved when only a ground-truth callsign is boosted, i.e., 86.7%→
96.1% ACC for scenario (a) and 39.9%→ 70.0% ACC for scenario (b). As in real life, we
usually do not have the ground-truth information, the improvement we can realistically
obtain with radar data is shown in the line tagged as N-grams. The effectiveness of biasing
also depends on the number of callsigns used to build the biasing FST, as the more false
callsigns are boosted the noisier the final rescoring is. According to previous findings, the
ideal size of the biasing FST for improving performance depends on the data, but typically,
the performance begins to decline when there are more than 1000 contextual entities [95].
In our data, we have an average of 200 contextual entities per spoken phrase. For the
n-gram-boosting experiments, we achieved a relative improvement in callsign WERs of
51.2% and 34% for callsign recognition with models (a) and (b), and 9.5% and 12.4% for the
entire utterance, respectively (see Table 4).
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Table 4. Results for boosting on NATS test set corpus (HAAWAII). We ablate two models: scenario (a),
a general ATC model trained only on supervised data, and scenario (b), a model trained on the
ATCO2-PL 500 h set. Results are obtained with offline CPU decoding. ¶ word error rates only on the
sequence of words that compose the callsign in the utterance.

General ATC Model ATCO2 Model-500h
Boosting WER EntWER ¶ ACC WER EntWER ¶ ACC

scenario (a)—only supervised data scenario (b)—only ATCO2-PL 500 h data
Baseline 7.4 4.1 86.7 26.7 30.0 39.9
Unigrams 7.4 3.6 88.0 25.6 24.1 46.2
N-grams 6.7 2.0 93.3 23.4 19.8 61.3
GT boosted 6.4 1.3 96.1 22.0 16.2 70.0

4.2. High-Level Entity Parser

A NER system is trained to parse text into high-level entities relevant to ATC commu-
nications. The NER module (or tagger) is depicted in Figure 3. First, a BERT [28] model
is downloaded from HuggingFace [96,97] which is then fine-tuned on the NER task with
3k sentences (∼3 h of speech) using the ATCO2 test set corpus (the pre-trained version of
BERT-base-uncased with 110 million parameters is used, see at: https://huggingface.co/
bert-base-uncased, accessed on 12 May 2023). In this corpus, each word has a tag that
corresponds to either callsign, . . . . . . . . . . . . .command,

:::::
values or

:::::
UNK (everything else). The final layer

of the BERT model is replaced by a linear layer with a dimension of 8 (this setup follows the
class structures from Section 3.3 of the paper: [13], i.e., two outputs for each class). As only
3k sentences are used, a 5-fold cross-validation is conducted to avoid overfitting. Further
details about experimentation are covered in [10]. We redirect the reader to the public
and open-source GitHub repository of the ATCO2 corpus (ATCO2 GitHub repository:
https://github.com/idiap/atco2-corpus, accessed on 12 May 2023).

Experimental setup: we fine-tune each model on an NVIDIA GeForce RTX 3090 for
10k steps. During experimentation, we use the same learning rate of γ = 5e−5, with a
linear learning rate scheduler. The dropout [90] is set to dp = 0.1 for the attention and
hidden layers, while GELU is used as an activation function [91]. We also employ gradient
norm clipping [98]. We fine-tune each model with an effective batch size of 32 for 50 epochs
with the AdamW optimizer [99] (β1 = 0.9, β2 = 0.999, ε =1e−8).

Evaluation metric: we evaluate our NER system with the F-score. The F-score or
F-measure is a statistical measure utilized in binary classification analysis to evaluate a
test’s accuracy. The F1-score, defined in Equation (4), represents the harmonic mean of
precision and recall. Precision, as described in Equation (2), is the ratio of true positive
(TP) results to all positive results (including false positives (FP)), while recall, as defined in
Equation (3), is the ratio of TP to all samples that should have been identified as positive
(including false negatives (FN)):

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

Results: the high-level entity parser system is evaluated on the only available public
resource, the ATCO2-4h test set, which contains word-level tags, i.e., callsign, command
and values. The results for precision, recall and F1-score over each of the proposed classes
are listed in Table 5. Our BERT-based system achieves a high level of performance in call-
sign detection, with an F1-score of 97.5%. However, the command and values classes show
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an average worse performance, with F1-scores of 82.0% and 87.2%, respectively. Notably,
the command class presents the greatest challenge due to its inherent complexity when
compared to values and callsigns. Values are predominantly composed of keywords, such
as “flight level” followed by cardinal numbers such as “two”, “three hundred” or “one thou-
sand”. These characteristics make them easy for a system to recognize. Similarly, callsigns
are highly structured, consisting of an airline designator accompanied by numbers and let-
ters spoken in the radiotelephony alphabet [21]. Given their importance in communication,
as in callsign highlighting [11] or read-back error detection [81], additional validation is
necessary for real-life scenarios or when working with proprietary/private data.

Although our BERT-based system achieves a high performance in callsign recognition,
there is still room for improvement. One potential method for enhancing the performance
is to incorporate real-time surveillance data into the system [10], which was introduced in
Section 2.2.2 and Table 4.

4.3. Response Generator

The response generator is composed of three submodules (see Section 2.1.3). The
grammar conversion and word fixer submodules are based on hard-coded rules. Thus,
quantitative results are not provided.

4.4. Text to Speech

Text-to-speech (TTS) is a technology that facilitates the conversion of written text
into spoken language. When employed in ATC, TTS can be integrated with virtual
simulation-pilot systems to train ATCos. In this study, a state-of-the-art non-autoregressive
speech synthesizer, the FastSpeech2 model [29], is utilized. A pre-trained TTS model
is downloaded from the HuggingFace hub [96]. Access to the model can be obtained
at https://huggingface.co/facebook/fastspeech2-en-ljspeech, accessed on 12 May 2023.
FastSpeech2 is used in inference mode with the sentence produced by the grammar con-
version submodule, and subsequently, the word fixer submodule, serving as the prompt
of the virtual simulation-pilot. Other models, such as Tacotron [72] or Tacotron2 [73] (free
access to the Tacotron2 model can be found at https://huggingface.co/speechbrain/tts-
tacotron2-ljspeech, accessed on 12 May 2023), can be fine-tuned and implemented to handle
ATC data.

System analysis: In our experiments, we discovered that the model is capable of
handling complex word sequences, such as those commonly encountered in ATC, including
read-backs from virtual simulation-pilots that contain multiple commands and values.
However, we did not conduct any qualitative analysis of the TTS-produced voice or speech,
leaving this as a future area of exploration. We also did not investigate the possibility of
fine-tuning the TTS module with ATC audio data, as our main focus was on developing a
simple and effective virtual simulation-pilot system using pre-existing open-source models.

Future lines of work: Although we did not pursue this area, it is indeed possible
to fine-tune the TTS module using in-domain ATC data. In Table 2, we provide a list of
both public and private databases that could be utilized for this purpose. Generally, the
same annotations used for ASR can also be applied to fine-tune a TTS system. However,
there are two different approaches that could be explored simultaneously or sequentially.
First, by considering the speaker role (ATCo or pilot), the TTS module could be biased
to produce speech that is more appropriate for different roles, such as noisy speech from
pilots. Second, if datasets are available that provide information on gender and accents,
such as the ATCOSIM dataset [32], TTS models with different accents and gender could
be developed.
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Table 5. F1-score (@F1), precision (@P) and recall (@R) metrics for callsign, command and value
classes of the high-level entity parser system. Results are averaged over a 5-fold cross-validation
scheme on the ATCO2-4h corpus in order to mitigate overfitting. We run fine-tuning five times with
different training seeds (2222/3333/4444/5555/6666).

Model
Callsign Command Values

@P @R @F1 @P @R @F1 @P @R @F1

bert-base-uncased 97.1 97.8 97.5 80.4 83.6 82.0 86.3 88.1 87.2

5. Limitations and Future Work

In our investigation of ASR systems, we have explored the potential of hybrid-based
and E2E ASR systems, which can be further enhanced by incorporating data relevant
to the specific exercise undertaken by ATCo trainees, such as runway numbers or way-
point lists. Moving forward, we suggest that research should continue to explore E2E
training techniques for ASR, as well as methods for integrating contextual data into these
E2E systems.

The repetition generator currently in use employs a simple grammar converter and
a pre-trained TTS system. However, we believe that additional efforts could be made
to enhance the system’s ability to convey more complex ATC communications to virtual
simulation-pilots. In particular, the TTS system could be fine-tuned to produce female
or male voices, as well as modify key features such as the speech rate, noise artifacts or
cues to synthesize voices in a stressful situation. Additionally, a quantitative metric for
evaluating the TTS system could be integrated to further enhance its efficacy. We also list
some optional modules (see Section 2.2) that can be further explored, e.g., the read-back
insertion module or voice activity detection.

Similarly, there is scope for the development of multimodal and multitask systems.
Such systems would be fed with real-time ATC communications and contextual data
simultaneously, later generating transcripts and high-level entities as the output. Such
systems could be considered a dual ASR and high-level entity parser. Finally, the legal and
ethical challenges of using ATC audio data are another important field that needs to be
further explored in future work. We redirect the reader to the legal and privacy aspects
for collection of ATC recordings section in [11].

6. How to Develop Your Own Virtual Simulation-Pilot

If you would like to replicate this work with in-domain data, i.e., for a specific scenario
or airport, you can follow the steps below:

1. Start by defining the set of rules and grammar to use for the annotation protocol. You
can follow the cheat-sheet from the ATCO2 project [11]. See https://www.spokendata.
com/atc and https://www.atco2.org/, accessed on 12 May 2023. In addition, one can
use previous ontologies developed for ATC [17].

2. For training or adapting the virtual simulation-pilot engine, you need three sets of an-
notations: (i) gold annotations of the ATCo–pilot communications for ASR adaptation;
(ii) high-level entity annotations (callsign, command and values) to perform NLU for
ATC; and (iii) a set of rules to convert ATCo commands into pilots read-backs, e.g.,
“descend to”→ “descending to”.

3. Gather and annotate at least 1 hour of ATCo speech and 1k samples for training your
high-level entity parser system. If the reader is interested in obtaining a general idea
of how much data are needed for reaching a desired WER or F1-score, see [62] for
ASR and [11] for ATC-NLU.

4. Fine-tune a strong pre-trained ASR model, e.g., Wav2Vec 2.0 or XLSR [26,27] with
the ATC audio recordings. For instance, if the performance is not sufficient, you can
use open-source corpora (see Table 2) to increase the amount of annotated samples
(see [11,30–32]). We recommend acquiring the ATCO2-PL dataset [11], which has
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proven to be a good starting point when no in-domain data are available. This is
related to ASR and NLU for ATC.

5. Fine-tune a strong pre-trained NLP model, e.g., BERT [28] or RoBERTa [67], with
the NLP tags. If the performance is not sufficient, one can follow several text-based
data-augmentation techniques. For example, it is possible to replace the callsign in
one training sample with different ones from a predefined callsign list. In that way,
one can generate many more valuable training samples. It is also possible to use more
annotations during fine-tuning, e.g., see the ATCO2-4h corpus [11].

6. Lastly, in case you need to adapt the TTS module to pilot speech, you could adapt
the FastSpeech2 [29] system. Then, you need to invert the annotations used for
ASR, i.e., using the transcripts as input and the ATCo or pilot recordings as targets.
This step is not strictly necessary, as already-available pre-trained modules possess a
good quality.

7. Conclusions

In this paper, we have presented a novel virtual simulation-pilot system designed for
ATCo training. Our system utilizes cutting-edge open-source ASR, NLP and TTS systems.
To the best of our knowledge, this is the first such system that relies on open-source ATC
resources. The virtual simulation-pilot system is developed for ATCo training purposes;
thus, this work represents an important contribution to the field of aviation training.

Our system employs a multi-stage approach, including ASR transcription, a high-level
entity parser system and a repetition-generator module to provide pilot-like responses
to ATC communications. By utilizing open-source AI models and public databases, we
have developed a simple and efficient system that can be easily replicated and adapted
for different training scenarios. For instance, we tested our ASR system on different well-
known ATC-related projects, i.e., HAAWAII, MALORCA and ATCO2. We reached as low
as 5.5% WER on high-quality data (MALORCA, ATCo speech in operations room) and
15.9% WER on low-quality ATC audio such as the test sets from the ATCO2 project (noise
levels below 15 dB).

Going forward, there is significant potential for further improvements and expansions
to the proposed system. Incorporating contextual data, such as runway numbers or
waypoint lists, could enhance the accuracy and effectiveness of the ASR and high-level
entity parser modules. In this work, we evaluated the introduction of real-time surveillance
data, which proved to further improve the system’s performance in recognizing and
responding to ATC communications. For instance, our boosting technique brings a 9%
absolute amelioration in callsign-detection accuracy levels (86.7%→ 96.1%) for the NATS
test set. It is also important to recall that additional efforts could be made to fine-tune the
TTS system for the improved synthesis of male or female voices, as well as modifying the
speech rate, noise artifacts and other features.

The proposed ASR system can reach as low as 5.5% and 15.9% word error rates (WERs)
on high- and low-quality ATC audio (Vienna and ATCO2-test-set-1h, respectively). It is
also proven that adding surveillance data to the ASR can yield a callsign detection accuracy
of more than 96%. Overall, this work represents a promising first step towards developing
advanced virtual simulation-pilot systems for ATCo training, and it is expected that future
work will continue to explore this research direction.
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The following abbreviations are used in this manuscript:
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ATCo Air Traffic Controller
ATC Air Traffic Control
CPDLC Controller-Pilot Data Link Communications
AI Artificial Inteligencce
WER Word Error Rate
ML Machine Learning
VAD Voice Activity Detection
ATM Air Traffic Management
TTS Text-To-Speech
NLU Natural Language Understanding
PTT Push-To-Talk
LM Language Model
AM Acoustic Model
WFST Weighted Finite State Transducer
FST Finite State Transducer
HMM Hidden Markov Models
DNN Deep Neural Networks
MFCCs Mel-frequency Cepstral Coefficients
LF-MMI Lattice-Free Maximum Mutual Information
VHF Very-High Frequency
E2E End-To-End
CTC Connectionist Temporal Classification
NER Named Entity Recognition
RG Response Generator
ICAO International Civil Aviation Organization
SNR Signal-To-Noise
dB Decibel
RBE Read-back Error
ATCC Air Traffic Control Corpus
ELDA European Language Resources Association
ANSPs Air Navigation Service Providers
CNN Convolutional Neural Network
GELU Gaussian Error Linear Units
Conformer Convolution-augmented Transformer
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Abstract: In air traffic management (ATM), voice communications are critical for ensuring the safe
and efficient operation of aircraft. The pertinent voice communications—air traffic controller (ATCo)
and pilot—are usually transmitted in a single channel, which poses a challenge when developing
automatic systems for air traffic management. Speaker clustering is one of the challenges when
applying speech processing algorithms to identify and group the same speaker among different
speakers. We propose a pipeline that deploys (i) speech activity detection (SAD) to identify speech
segments, (ii) an automatic speech recognition system to generate the text for audio segments,
(iii) text-based speaker role classification to detect the role of the speaker—ATCo or pilot in our
case—and (iv) unsupervised speaker clustering to create a cluster of each individual pilot speaker
from the obtained speech utterances. The speech segments obtained by SAD are input into an
automatic speech recognition (ASR) engine to generate the automatic English transcripts. The speaker
role classification system takes the transcript as input and uses it to determine whether the speech
was from the ATCo or the pilot. As the main goal of this project is to group the speakers in pilot
communication, only pilot data acquired from the classification system is employed. We present a
method for separating the speech parts of pilots into different clusters based on the speaker’s voice
using agglomerative hierarchical clustering (AHC). The performance of the speaker role classification
and speaker clustering is evaluated on two publicly available datasets: the ATCO2 corpus and the
Linguistic Data Consortium Air Traffic Control Corpus (LDC-ATCC). Since the pilots’ real identities
are unknown, the ground truth is generated based on logical hypotheses regarding the creation of
each dataset, timing information, and the information extracted from associated callsigns. In the case
of speaker clustering, the proposed algorithm achieves an accuracy of 70% on the LDC-ATCC dataset
and 50% on the more noisy ATCO2 dataset.

Keywords: speaker clustering; speaker role detection

1. Introduction

Air traffic control (ATC) communication ensures safe and efficient flight operations [1].
The rise of new artificial intelligence/machine learning technologies provides opportunities
for a fundamental change in automation and it becomes a central enabler for future air
traffic management concepts. Machine learning technologies are typically data-driven
and require a large amount of data for training and development. In the case of voice
communication, these data are available through Air Traffic Navigation Service Providers
(ANSPs). However, obtaining such data through ANSPs is a legally very complex task, as it
typically requires access to the operational control rooms of the ANSPs. A cheap and easy
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alternative (if allowed by national data privacy laws) is the use of data collected by various
initiatives worldwide, such as LiveATC1 (https://www.liveatc.net, accessed on 29 April
2023) in the U.S. and ATCO2 (https://www.atco2.org, accessed on 29 April 2023) in Europe,
which collect and store freely available voice communications from Very-High-Frequency
(VHF) radio channels. In the case of ATCO2, a large set of volunteers collect the voice as
well as the supporting contextual data using relatively cheap VHF radio receivers, and
the data are then collected through a centralized server. This approach can easily deliver
thousands of unlabeled transmissions. Although such data are typically noisier [2], it has
been shown that they can be valuable for training machine learning technologies, including
the ATC domain [3].

The average length of each utterance in the collected data is around 3.3 s. However,
this presents a unique challenge in the ATC domain, where rapid exchanges between
pilots and air traffic controllers occur in communication scenarios, and where utterances
are often brief. Accurately identifying speaker roles and clustering them can therefore be
challenging, especially when multiple speakers communicate simultaneously on the same
channel. The task becomes further complicated due to variations in speech patterns, accents,
and communication styles. These challenges underscore the need for advanced machine
learning techniques that can handle noisy, short-duration audio data while accurately
distinguishing between different speakers and their roles in the communication process.

Besides collecting free data for ATM-oriented machine learning technologies, there
are also other use cases that are of serious interest to governmental agencies such as pre-
screening the VHF radio channels and detecting their potential abuse by anonymous private
persons. This use case is a principal motivator for this paper. VHF radio channels carry
the utterances of both pilots and ATCos as one single-channel recording (i.e., a huge wave
file that is not segmented). Even if the segmentation algorithm is applied (i.e., typically,
voice/speech activity detection can separate communication into short chunks), there is
no other information about whether the utterance comes from the ground (ATCo) or the
cockpit (pilot).

This paper focuses on clustering speakers appearing either in the same VHF radio
channel or across many channels over a given period of time. This is a principal question of
security officers when dealing with the abuse of non-encrypted radio communications. The
solution given in this paper is tested by analyzing ATCo–pilot communication captured
by ATCO2 data. More specifically, our paper is partially built on the concept of separating
ATCos and pilots, as investigated in [4]. As ATCos typically appear in the same VHF radio
channel over a relatively long period (up to several hours, depending on the length of their
shift), the appearance of a new pilot in the analyzed VHF radio channel is very probable.
This paper, therefore, focuses on clustering pilot audio recordings to emulate the reality of
automatically clustering random speakers in VHF radio channels.

Recent advances in machine learning, particularly deep neural networks (DNNs), have
shown promise in addressing these issues by modeling the complex relationships between
acoustic features and speakers’ identities. DNNs can be trained on large amounts of speech
data and can learn to extract high-level features from the speech audio, which can be used
for speaker clustering [5]. Despite these advances, the task of speaker clustering in ATC
communications remains challenging due to the presence of multiple speakers in the same
channel, in addition to the lack of ground-truth information. This absence of labeled data
poses significant problems in developing such systems. Nevertheless, the development of
such automatic pipelines presents great value in both operational and forensic contexts.

The proposed pipeline presented in this paper comprises four stages: speech segment
separation, automatic speech recognition (ASR), speaker role classification, and speaker
clustering. The first stage separates the speech segments from a single channel, followed by
ASR to transcribe into English. The transcribed text is then fed into a speaker classification
model, which detects the pilot segments. The speaker role classification is used only to
filter the pilot audio required for speaker clustering. Finally, a speaker clustering method
separates and groups the pilot speaker from the audio segments. The proposed pipeline
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aims to improve the accuracy of speaker clustering in the ATC domain and facilitate
effective communication between controllers and pilots.

In air traffic control (ATC) communication analysis, most similar works tend to address
only a portion of the complete pipeline outlined in this research. Notably, speaker clustering,
a critical part of this pipeline, has received limited attention due to the absence of reliable
ground truths on publicly available datasets. It is in this context that the importance of our
proposed integrated framework becomes evident. By including speech activity detection,
automatic speech recognition, text-based speaker role classification, and unsupervised
speaker clustering, this pipeline offers a comprehensive solution. This approach not only
addresses the limitations of existing methods but also has the potential to significantly
improve the analysis of ATC communication. It bridges the crucial gap between individual
components, enabling a deeper understanding of speaker roles and ultimately enhancing
safety and efficiency in air traffic control. The rest of this paper is organized as follows.
In Section 2, we present the different steps of the pipeline through a discussion of related
works, as well as the method used in each step in our work. In Section 3, we describe the
different datasets used for training and evaluation in each of the two main components of
our pipeline. In Section 4, we present the experiments, the method of evaluation, and the
results of each experiment. Finally, we conclude the paper in Section 5 and discuss potential
future directions for research in this area.

2. Automatic Speaker Clustering Pipeline

In the ATC domain, the communication of the pilots is of particular interest compared
to that of ATC controllers (ATCos) because pilots are responsible for executing flight plans
and maneuvering the aircraft, making their communication critical for ensuring safe and
efficient flights. Therefore, it is vital to separate pilots’ communications from those of ATCos
to train automatic systems for each group. Separating the communications of individual
pilots is essential for post-flight analysis, incident investigations, and pilot training tasks.
The proposed method starts by extracting the speech segments using the SAD system and
then using ASR to transcribe those extracted segments. The transcripts obtained are used
as input to classify the pilot’s speech segments, which are used in the final step as input to
the speaker clustering model, as shown in Figure 1. The following subsections describe
each step of this pipeline.

Speech Activity

Detection 

Speaker Role

Classification 

ASR engine 

turning left nine zero degrees

ryanair nine two bravo quebec ...

ATCo Pilot

...

Pilot 1 Pilot 2 Pilot N

Speaker Clustering 

Long recording

Splits

Figure 1. Overview of the automatic speaker clustering pipeline.
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2.1. Speech Activity Detection

Speech activity detection (SAD) is a crucial process in speech processing that involves
identifying speech segments within an audio utterance. This system splits the audio based
on long-silence regions to generate a subset of audio files without silence. It plays a vital role
in many speech-based applications such as automatic speech recognition (ASR), speaker
recognition, and speaker diarization. Researchers are actively working on developing a SAD
system that can accurately operate in noisy environments. The approach is based on [6],
which leverages multilingual ASR to improve speech activity detection. The acoustic model
(AM) was trained using a lattice-free maximum mutual information loss to extract contextual
information from acoustic frames. Multilingual training enhances robustness to noise and
language variability. The proposed multilingual acoustic model was trained on 18 languages
from the BABEL datasets (https://catalog.ldc.upenn.edu/byyear, accessed on 29 April 2023),
including LDC2018S07, LDC2018S13, LDC2018S02, LDC2017S03, LDC2017S22, LDC2017S08,
LDC2017S05, LDC2017S13, LDC2017S01, LDC2017S19, LDC2016S06, LDC2016S08, LDC2016
S02, LDC2016S12, LDC2016S09, LDC2016S13, and LDC2016S10. The primary objective
of using this dataset was to develop a SAD system that can operate accurately in noisy
environments and is robust to language variability. Within each language-dependent part
of the acoustic model, speech and non-speech acoustic frames were mapped to a different
set of output context-dependent phones or posteriors. For each language, the index of
the maximum output posterior was used as a frame-level speech/non-speech decision
function. Conventional logistic regression [7] and majority voting were employed to combine
decisions from different languages.

2.2. Automatic Speech Recognition (ASR)

Automatic speech recognition (ASR) is a sub-field of speech processing that involves
converting speech to text, typically in one language. Hence, this is also termed speech-to-
text. A typical ASR system employs an AM and a language model (LM) for converting
a speech signal to text. The former is trained on speech recordings with corresponding
(ideally manually corrected) text, also referred to as transcripts. The AM represents the
relationship between a speech signal and phonemes or other linguistic units that make up
the speech. The latter is trained on a large corpus of text data. A probability distribution
over sequences of words usually represents the LM. The LM provides context to distinguish
between words and phrases that sound similar. Using the knowledge of the AM and LM,
a decoding graph is usually built as a weighted Finite State Transducer (FST) [8–10], which
generates text output given an observation sequence.

To build a robust speech recognition engine, the artificial intelligence behind it has to
be adept at handling challenges such as different acoustic conditions, background noise,
model size, and performance. Development in natural language processing and neural
network technology has improved speech and voice technology. Past research projects in
ATM have provided a platform to develop and improve ASR systems for ATCos and pilots.
In [11,12], the authors developed ASR for ATCos to help increase their efficiency and reduce
workloads. The authors of [1] provided a benchmark on ASR for different ATC databases.
An approach for leveraging non-transcribed audio data to improve ASR was investigated
in [13]. A semi-supervised learning approach for enhancing ASR in the ATM domain was
employed in [11,12,14]. In [15–17], the authors aimed to improve the recognition of the
callsigns in ASR by integrating surveillance data. Finally, the authors of [18] investigated
the effect of fine-tuning large pre-trained models, trained using a Transformer architecture,
for application in the ATC domain.

This work presents ASR systems that employ two approaches: (i) a hybrid system and
(ii) end-to-end training. The hybrid system for ASR uses deep neural network (DNN)-based
AMs trained with the lattice-free maximum mutual information (LF-MMI) [19] criterion and
n-gram models for the LM. Current state-of-the-art systems use a Transformer architecture,
which uses unsupervised [20] or self-supervised [21] learning for speech representations.
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2.3. Speaker Role Classification

The task of sequence labeling (SL) assigns labels to words that share a specific role
and meaning within the grammatical structure of a sentence. In [22], these groups of
words/sentences had similar grammatical properties, and the work focused on two sub-
tasks of SL: named entity recognition (NER) [23,24] and sequence classification (SC) [22,25].
Early work on NER and SC was based on handcrafted ontology, dictionaries, and lexicons,
which made them prone to human error. Nowadays, deep learning-based systems are
cataloged as state-of-the-art on NER [24] and SC. These models are primarily based on
convolutional neural networks [26], recurrent neural networks [22], and Transformers [27].

ATC communications are a rich source of information and follow explicit grammar
and ontology. Additionally, ATC communications are built on a well-defined lexicon and
dictionary that speakers’ errors can sometimes disrupt. One example is the order in which
the named entities (e.g., callsign) are uttered in the communication. ATCos utter the callsign
(lufthansa seven eight two) at the beginning, whereas pilots invariably do so at the end:

ATCo: “lufthansa seven eight two descend flight level seven zero” and,
PILOT: “descend flight level seven zero lufthansa seven eight two”.

Following the pros and cons described in Section 2.3, we demonstrate that state-of-
the-art NER and SC can be leveraged to automatically identify speaker roles. For instance,
one can apply NER to identify ATC-related named entities such as callsigns, command types,
or units. Similarly, the structure and type of these ‘entities’ used in a given communication
can be leveraged to identify speaker roles. Our previous research on identifying speaker
roles [4] mainly focused on a grammar-based bag-of-words system that was capable of
performing speaker role identification with precision/recall values of 0.82/0.81 for ATCos
and 0.84/0.85 for pilots, respectively. Also, in [28–30], we explored speaker change detection
for ATC text. In [31], the authors mentioned that manually annotating pilot recordings
was more challenging than annotating ATCo recordings due to their quality, speech rate,
speaker accent, etc. Another reason is that the audio of ATCos is obtained directly from the
source, whereas the pilot audio is recorded through the radio receiver. This is one of the
reasons why speech processing systems (ASR, diarization, and speaker role identification)
perform considerably worse for pilots’ recordings compared to ATCos’ recordings.

2.4. Speaker Clustering

Over the past few years, there has been growing interest in applying speech processing
techniques to the air traffic control (ATC) domain. Specifically, researchers have explored
various methods for automatically analyzing and classifying speech in ATC conversations.
Although speaker clustering is an essential task in the ATC domain, only a few research
studies have focused on it due to the need for ground truths for speaker identity. However,
speaker clustering is essential for improving safety and efficiency, especially for pilots,
by accurately tracking and managing communication flow, identifying instances of miscom-
munication and errors, and enabling timely interventions and corrective actions. In [32],
the author proposed a method based on graph neural networks (GNNs) to enhance cluster-
ing procedures in speaker diarization. The approach aims to purify the similarity matrix
used in spectral clustering and assumes a sequence of speaker embeddings that the GNN
processes. The GNN outputs a distance metric between the reference and estimated affinity
matrices and is trained using a combination of a histogram loss and nuclear norm. Another
approach for speaker diarization was proposed in [33], using deep neural networks to learn
representations and scoring functions for speaker diarization without relying on i-vector
clustering. The proposed method aims to reduce the computational cost and improve the
efficiency of speaker diarization in the presence of multiple speakers.

As described above, the purpose of speaker clustering is to classify segmented speech
into clusters so that each group only contains speech from one specific speaker. Our
approach is based on the methodology described in [34], in which speech segments were
preprocessed using the Kaldi FBank features with 40 dimensions, a 16k Hz sampling rate,
and 40 filter-bank channels. These features were used as input to the RESNET34 neural
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network, which processed them using 2-dimensional CNN layers to generate fixed-size
embeddings for each speaker. To train the model, we used 500,000 utterances by thousands
of speakers from the publicly available VOXCeleb 2 dataset. We applied Probabilistic
Linear Discriminant Analysis (PLDA) to the embeddings, which were trained on the
VOXCeleb 2 data. The x-vector features generated by the neural network were centered
using the training data mean, and Linear Discriminant Analysis (LDA) was applied to
further improve the system’s performance. For speaker clustering, we used the unweighted
pair group method with arithmetic mean (UPGMA), which is a variant of agglomerative
hierarchical clustering (AHC). The method consists of grouping similar objects or data
points based on their pairwise distances. The algorithm follows the following steps:

1. Calculate the distance matrix D:

Dij =

{
0, i = j
dij, i 6= j,

(1)

where dij is the distance between objects (i, j).

2. Calculate the minimum distance pair (i∗, j∗) in the distance matrix D:

(i∗, j∗) = arg min
i,j

Dij (2)

3. Calculate the new cluster k by averaging the distances between i∗ and all objects in
the cluster containing i∗ and j∗:

k =
1

|Ci|+ |Cj| ∑
l∈Ci∪Cj

dil (3)

where Ci and Cj are the clusters containing objects i* and j*, and k represents the distance
value associated with the newly formed cluster.

4. Update the distance matrix D by removing rows and columns i∗ and j∗ and adding a
new row and column for the newly formed cluster k:

Dik = Dki =
dik + djk

2
, ∀i 6= i, j (4)

Dkj = Djk = ∞ (5)

Dkl = Dlk =
|Ci|dil + |Cj|djl

|Ci|+ |Cj|
, ∀l 6= i, j, k (6)

In this step, k is an index representing the newly formed cluster, whereas i′ and j′

represent the indices of the objects selected for merging.

5. Repeat steps 2–4 until all objects are in a single cluster or the process is stopped based
on a fixed threshold.

In our case, we obtain a pairwise log-likelihood ratio scores matrix using our PLDA
model. We represent the distance between clusters by subtracting this matrix from zero,
which is then fed into our clustering algorithm. The output generated by the clustering
algorithm groups the audio files into clusters, with files that are potentially spoken by the
same speaker being assigned to the same cluster.

3. Datasets

In this section, we describe the datasets used to train and evaluate our speaker role
classification and speaker clustering components. For training, we employed different
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datasets for each of the two components. However, for evaluation, we utilized identical
testing datasets to evaluate the performance of both components.

3.1. Training

The following sub-section describes the datasets used in the training of speaker role
classification and speaker clustering.

3.1.1. Speaker Role Classification

LDC-ATCC corpus: The Air Traffic Control Corpus (LDC-ATCC: https://catalog.
ldc.upenn.edu/LDC94S14A, accessed on 29 April 2023). (ATCC) consists of recorded
speech for use in ATC research in the area of ASR and NLP. The audio data contains voice
communication traffic between various ATCos and pilots. The audio files are sampled
at 8 kHz, 16-bit linear, representing continuous monitoring without squelch or silence
elimination. Each file captures a single radio frequency channel over one to two hours
of audio. The corpus contains gold annotations and metadata (metadata covers voice
activity segmentation details, speaker role information (who is talking), and callsigns in
ICAO format). The corpus consists of approximately 25 h of ATCo and pilot transmissions
(after SAD).

UWB-ATCC corpus: This corpus (released by the University of West Bohemia:
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0,
accessed on 29 April 2023) is a free and public resource for research on ATC. The commu-
nication between ATCos and pilots is manually transcribed and labeled with the speaker
information, i.e., pilot/controller. The total duration of speech after removing silences is
13 h. The audio data are single-channel and sampled at 8kHz and 16-bit PCM.

3.1.2. Speaker Clustering

VoxCeleb 1 [35]: This is a dataset comprising 100,000 utterances by 1251 celebrities,
which were extracted from videos uploaded to YouTube. The dataset ensures a gender
balance, with 55% of the speakers being male, and it features a wide range of speakers of
different ages, accents, and ethnicities. The dataset includes speech audio taken in different
environments. The diversity of the speakers and environments makes the dataset valuable
for training and evaluating different systems for speaker and speech recognition.

VoxCeleb 2 [36]: This is the second version of the dataset, and it builds upon the
success of its predecessor, VoxCeleb 1. Like VoxCeleb 1, it contains a large number of
utterances by celebrities extracted from YouTube videos, and it features a diverse set
of speakers in terms of age, ethnicity, and accent. However, VoxCeleb 2 has more than
1,000,000 utterances by 6000 celebrities, and it has no overlap with the identities of VoxCeleb
1. As a result, it provides an even larger and more diverse dataset for training and evaluating
speech processing systems.

Librispeech [37]: This is a corpus of approximately 1000 h of read English speech
sampled at 16 kHz from the LibriVox project. The LibriVox project is responsible for the
creation of approximately 8000 public domain audio books, the majority of which are in
English. Most of the recordings are based on texts from Project Gutenberg2, also in the
public domain.

3.2. Evaluation

We employed the same testing datasets for evaluating the performance of automatic
speech recognition, speaker role classification, and speaker clustering components.

LDC-ATCC dataset: The test set of LDC-ATCC was used for evaluation. This set
consists of 2961 utterances, featuring dialogues between ATCos and pilots, and uses the
same speech audio data described in the previous section.

ATCO2 corpus: This dataset was built for the development and evaluation of ASR
and NLP technologies for English ATC communications from several airports worldwide
(e.g., LKTB, LKPR, LZIB, LSGS, LSZH, LSZB, and YSSY). We used the ATCO2 test set corpus,
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which comprises ∼4 h of annotated data. The corpus is available for purchase through
ELDA (http://catalog.elra.info/en-us/repository/browse/ELRA-S0484, accessed on 29
April 2023). The recordings are mono-channel sampled at 16 kHz and 16-bit PCM [38].

4. Experiments and Results

In this section, we present the experimental setup and the results obtained for the
different modules of the automatic speaker clustering pipeline described in Section 2.
The results include ASR, speaker role classification, speaker clustering modules, as well as
the overall performance of the pipeline when all modules are combined. The results are
discussed in detail in the following subsections.

4.1. Automatic Speech Recognition

As mentioned in Section 2.2, we adopted two approaches for training an ASR engine:
(i) a hybrid-based approach and (ii) an end-to-end training approach. The automatic
transcripts were generated using automatic speech recognition systems trained with∼190 h
of annotated ATC data.

Baseline: The main blocks of the hybrid ASR system are the acoustic model (AM)
and language model (LM). In our experiments, conventional biphone convolutional neural
network (CNN) [26] + TDNN-F [39]-based acoustic models trained with the Kaldi [40]
toolkit (i.e., nnet3 model architecture) were used. AMs were trained with the LF-MMI
training framework, which is considered to achieve state-of-the-art performance for hybrid
ASR. Threefold speed perturbation with MFCC features was used, and i-vectors were
used for speaker representation. The 3-gram LM was trained on all the manual transcripts
available in the ATC datasets.

XLSR-KALDI: As mentioned earlier, the self-supervised learning approaches using
the wav2vec framework facilitated the state-of-the-art performance in ASR. These models
were pre-trained with 50k h of speech data. One such model is the XLSR [41], which
can then be fine-tuned to ATC data. The authors of [42] proposed to use the LF-MMI
criterion (similar to hybrid-based ASR) for the supervised adaptation of the self-supervised
pretrained XLSR model [41]. We employed this technique to fine-tune the pre-trained
model on our annotated ATC data.

The performance of our ASR system is presented in Table 1 using the Word Error Rate
(WER) metric. The system that achieved the lowest WER on the test data was used as the
input for the speaker role classification system.

Table 1. WER (%) of our ASR used in our experiments for speaker role classification evaluated on the
ATCO2 and LDC-ATCC test sets described in Section 3.2.

Model ATCO2 LDC-ATCC

Baseline 36.6 13.5
XLSR-KALDI 25.7 18.7

4.2. Speaker Role Classification

A BERT-based speaker role identification module was implemented that allowed
us to attribute a speaker role (i.e., ATCo or pilot) to a given ATC communication. We
fetched a BERT (BERT-base-uncased model: 110 M parameters) model [27] from Hug-
gingface [43,44]. We then used ground-truth speaker labels to fine-tune the model on the
sequence classification task with the data defined in Section 3.1.1.

Fine-tuning: the BERT model was fine-tuned for 3k steps (∼5 epochs), with a 500-step
warm-up phase. The learning rate was increased linearly up to 5 × 10−5 during warm-up,
and then it decayed linearly. We fine-tuned each model using the Adam optimizer, a batch
size of 32, and a gradient accumulation of 2. After the training, we simply performed
inference on either the manual transcripts or automatic transcripts generated through ASR.
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Results: Table 2 shows the performance of the data-driven model trained for speaker role
classification. The performance is shown for the test sets—ATCO2 and LDC ATCC—trained
with all combinations of the training data sets mentioned in Section 3.1.1. We also report
the F1 score of the system when (i) manual transcripts and (ii) automatic transcripts are
used for classification.

Table 2. Averaged F1 score [0–1] for speaker role classification using different training (column
1) and test sets. All the experiments used the same model (BERT-base-uncased) and the same
hyperparameters. We report the mean of five runs with different seeds (the standard deviation was
less than 0.01 for all cases, thus we omit it). Bold refers to the best performance in each column.
Metrics reported on ground-truth transcripts and automatic transcripts generated using the speech
recognition system.

Model ATCO2 LDC-ATCC
Manual Transcripts

LDC-ATCC 0.83 0.94
UWB 0.85 0.87

LDC-ATCC + UWB 0.87 0.93
Automatic Transcripts

LDC-ATCC 0.5 0.9
UWB 0.51 0.8

LDC-ATCC + UWB 0.53 0.9

4.3. Speaker Clustering

For all the experiments in this study, hypotheses concerning the ground truth of pilot
identities were generated based on information about the creation of the datasets. Two
datasets, ATCO2 and LDC-ATCC, were used to evaluate the performance of our model.
In ATCO2, the ground truth was generated using both the callsign and flight date as the
pilot identity information. In LDC-ATCC, only the callsign was used as the ground truth
for the pilot identity. To determine the optimal threshold for hierarchical clustering, we
randomly selected a representative subset of the LDC-ATCC training set consisting of
three files per callsign from 259 different callsigns. We fine-tuned the threshold on this
selected set as a whole, extracting the value that resulted in the highest accuracy, as shown
in Figure 2. The resulting threshold was then used for evaluation on both datasets.

Upon evaluating the test set using this ground-truth generation approach, we observed
a total of 929 distinct speakers in the ATCO2 dataset. The ATCO2 dataset covers a span
of 7 months from October 2020 to May 2021. Additionally, in the LDC-ATCC dataset, we
identified 189 distinct speakers. This indicates the number of unique speakers identified
within each respective dataset. The output generated by the clustering algorithm represents
the different clusters.

To evaluate the accuracy of our system, we proposed the following evaluation ap-
proach: Using the ground truth, we assigned to each cluster the speaker that was assigned
to it the most. The utterances that were not assigned to that specific cluster but had this
speaker as their label are considered errors. The idea was to map each speaker with one
cluster, while all the remaining clusters would be considered errors. Using the same ap-
proach, when evaluating the performance of the entire pipeline, we added a constraint to
our evaluation method. The pipeline first extracts the speech segments of the pilots. All
utterances that are incorrectly classified as belonging to a pilot are also considered errors in
our speaker clustering accuracy.

We conducted experiments using two datasets, LDC-ATCC and ATCO2, and utilized
the speaker role classification (SRC) method to extract the speech segments of pilots from
the datasets. The number of speech utterances for pilots was initially 1350 for ATCO2 and
1446 for LDC-ATCC using the SRC ground truth. However, 243 and 281 utterances were,
respectively, removed from ATCO2 and LDC-ATCC datasets due to their short duration
(less than 1 s). We further applied the SRC on the manual transcripts of the same dataset,
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resulting in 1455 utterances for ATCO2 and 1563 utterances for LDC-ATCC. However, 322
and 300 of these utterances were excluded due to their short duration. Lastly, we used
SRC on the ASR transcripts of the datasets, resulting in 1705 and 1563 speech utterances
for ATCO2 and LDC-ATCC, respectively. However, 389 and 288 of the ASR transcripts
were excluded due to their short duration. These excluded segments were not used in
the speaker clustering part of the experiment. The details of the pipeline’s output are
summarized in Table 3, whereas the performance of our model across all experiments is
summarized in Table 4.

In our experiments, we found that the level of noise in the data had a significant
impact on the accuracy of the speaker clustering pipeline. We observed that the speaker
clustering model performed better on the LDC-ATCC dataset, which contained less noise,
compared to the noisier ATCO2 dataset. After analyzing the results, we concluded that
the difference in the accuracy of all pipelines was mainly due to the performance of the
automatic speech recognition (ASR) and speaker role classification (SRC) components of the
pipeline, which exhibited lower performance on the noisier ATCO2 data. However, on the
LDC-ATCC dataset, we observed that both ASR and SRC exhibited better performance,
resulting in a smaller decrease in accuracy. In addition, we found that the difference in
performance between clustering alone and the complete pipeline was 8% on the LDC-
ATCC dataset and 16% on the ATCO2 dataset. These findings suggest that more research
is necessary to improve the performance of the ASR and SRC components, especially in
datasets with higher levels of noise like ATCO2 to achieve optimal results with the speaker
clustering pipeline.

Figure 2. Accuracy vs. thresholds plot used to fine-tune the threshold on a representative subset of
the LDC-ATCC dataset for the speaker clustering algorithm. The x-axis shows the threshold values
and the y-axis shows the corresponding accuracy values. The red circle indicates the best threshold
value (65) with a maximum accuracy of 82%.
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Table 3. Automatic speaker clustering performance details for ATCO2 and LDC-ATCC datasets.
Number of segments classified as ATCo: The segments that were classified as ATCo instead of pilot
using the SRC model. Number of Correct segments: The segments that were assigned the same label
as the ground truth after the evaluation mapping. Number of Incorrect segments: The segments
that were assigned a different label from the ground truth after the evaluation mapping.

Experiment Number of Segments Number of Correct Number of Incorrect
Classified as ATCo Segments Segments

ATCO2
SRC Ground Truth - 739 368
Manual transcript 118 663 470

ASR transcript 337 661 655
LDC-ATCC

SRC Ground Truth - 908 257
Manual transcript 111 897 366

ASR transcript 128 896 379

Table 4. Accuracy (%) of the speaker clustering on ATCO2 and LDC-ATCC datasets.

Dataset SRC Ground Truth Manual Transcript ASR Transcript

ATCO2 66% 58% 50%

LDC-ATCC 78% 71% 70%

5. Discussion and Conclusions

In conclusion, the presented pipeline offers a viable solution to the speaker clustering
problem in ATC communication. By using a combination of speech activity detection,
automatic speech recognition, text-based speaker role classification, and unsupervised
speaker clustering, the pipeline can accurately identify and group speech segments from the
same pilot among different speakers. The reported accuracies of 70% and 50% on the LDC-
ATCC and ATCO2 datasets, respectively, signify the pipeline’s proficiency in identifying
pilot speakers within the ATC domain. It is important to note that these accuracies reflect the
overall performance of the entire pipeline. There is an observed variation in accuracy when
dealing with datasets of different noise levels, such as the LDC-ATCC and ATCO2 datasets,
which show a notable deviation of approximately 20%. This discrepancy can be attributed
to the effect of noise appearing in VHF data. Specifically, when noise levels increase, it not
only challenges the initial component (SAD) by making it harder to accurately identify
speech segments but also significantly impacts the ASR component, leading to transcription
errors. These inaccuracies propagate through the pipeline and affect the performance of all
the remaining components. Consequently, the decrease in speaker clustering accuracy from
70% to 50% on the LDC-ATCC and ATCO2 datasets illustrates the sensitivity of the entire
pipeline to noise interference. Nevertheless, when considering the speaker clustering step
alone and utilizing the speaker role classification as ground truth, even higher accuracy
rates of 78% and 66% can be achieved on the same LDC-ATCC and ATCO2 datasets. This
technology has the potential to improve ATC safety, facilitating post-flight analysis and
incident investigation. As such, further research in this area is warranted to refine and
improve these automated methods for speaker clustering in ATC communication.

Potential future work could focus on enhancing the performance of speaker clustering
models with noisy data such as the ATCO2 dataset. We aim to adapt the embedding used
for the speaker clustering model on ATC data to improve its performance with such types of
noisy data. Another approach is to investigate some speech processing methods to reduce
noise and improve the quality of the input data. We also plan to incorporate language
identification (LID) as prior information for the speaker clustering in our proposed pipeline.
This could potentially improve the accuracy of the clustering by providing additional
information about the language and dialect being spoken. Another approach could be to
expand the pipeline to support a variety of languages and accents, which would make it
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more suitable for use in actual ATM systems. By making these modifications, we believe
that we can enhance the performance of the speaker clustering model and make it more
appropriate for use in real-world scenarios.
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Abstract: Voice communication between air traffic controllers (ATCos) and pilots is critical for
ensuring safe and efficient air traffic control (ATC). The handling of these voice communications
requires high levels of awareness from ATCos and can be tedious and error-prone. Recent attempts
aim at integrating artificial intelligence (AI) into ATC communications in order to lessen ATCos’s
workload. However, the development of data-driven AI systems for understanding of spoken ATC
communications demands large-scale annotated datasets, which are currently lacking in the field.
This paper explores the lessons learned from the ATCO2 project, which aimed to develop an unique
platform to collect, preprocess, and transcribe large amounts of ATC audio data from airspace in
real time. This paper reviews (i) robust automatic speech recognition (ASR), (ii) natural language
processing, (iii) English language identification, and (iv) contextual ASR biasing with surveillance
data. The pipeline developed during the ATCO2 project, along with the open-sourcing of its data,
encourages research in the ATC field, while the full corpus can be purchased through ELDA. ATCO2
corpora is suitable for developing ASR systems when little or near to no ATC audio transcribed
data are available. For instance, the proposed ASR system trained with ATCO2 reaches as low as
17.9% WER on public ATC datasets which is 6.6% absolute WER better than with “out-of-domain”
but gold transcriptions. Finally, the release of 5000 h of ASR transcribed speech—covering more
than 10 airports worldwide—is a step forward towards more robust automatic speech understanding
systems for ATC communications.

Keywords: air traffic control communications; automatic speech recognition and understanding;
OpenSky Network; callsign recognition; ADS-B data

1. Introduction

There has been a growing interest in the development of automatic speech recognition
(ASR) and understanding systems for air traffic control (ATC) due to their potential to
enhance the safety and efficiency of the aviation industry. The application of ASR and
understanding technologies in ATC has resulted in the creation of advanced proof-of-
concept engines that can assist air traffic controllers (ATCos) in their daily tasks. These
systems are designed to analyze spoken ATC communications and convert them into
machine-readable texts, allowing for faster and more accurate processing. Previous works
such as MALORCA [1], HAAWAII [2] or SESAR2020’s Solution 97.2 [3] have shown mature
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enough methods to reduce ATCos’ workload while increasing safeness, e.g., see [4,5]. The
authors concluded that integrating novel ASR-based tools can reduce the total amount of
time that ATCos expend on entering and confirming the clearances in their workstations by
20% absolute points. As a result, ASR and understanding technologies are becoming more
advanced and capable of handling the complexities of ATC communications, leading to
improved safety and efficiency in the aviation industry. The paragraphs below summarize
three current challenges—while working with ATC voice communications—addressed by
this paper:

(1) Previous works on ASR to analyze air traffic communication is built for a specific
domain, e.g., one airport or en-route/approach scenarios. The process of adapting machine
learning models to different airports or control areas requires new in-domain data, which
remain challenging to collect and annotate. For instance, ATC audio data collected from
one airport, e.g., airport X, in general, do not transfer well to airport Y.

(2) ATC data collection and their transcription [6] are expensive and time-consuming
tasks. The data collection phase includes data capture and preprocessing; this task can be
automated. The data transcription phase aims at producing the word-by-word transcript of
the given ATC utterance; this task is carried out by hand by humans. It becomes expensive
as several man hours are needed to transcribe one hour of ATC speech without silence. For
some solutions, such as those targeting small airports, this cost may be prohibitive. This
raises the question of what is the most efficient manner to collect and process large-scale
ATC audio data.

(3) In addition, audio data from ATC communication are considerably noisier with
regard to standard ASR corpora when they are captured via very-high-frequency (VHF)
receivers. In some cases, SNR (signal-to-noise) levels may range from 5 to 20 dB. Thus, it
becomes challenging to develop an ASR system and later use its outputs for downstream
tasks, e.g., natural language processing (NLP), due to the high word error rates (WER).
In contrast, higher SNR ATC data sourced from operation rooms and characterized by
close-mic recordings and substantially reduced noise can be obtained from air navigation
service providers (ANSPs), albeit being limited to private use in most cases.

In this paper, we answer these questions by extending our previous work on the
ATCO2 project and its resulting corpora [7]; see detailed information in Appendix A. The
ATCO2 project aimed to reduce the human effort required to collect, preprocess, and tran-
scribe ATC voice communications by employing state-of-the-art ASR and NLP systems [8].
ATCO2 releases the largest corpus of ATC voice communications to date, consisting of
more than 5000 h of automatically transcribed audio data and their correspondent surveil-
lance data [9]. In addition, four hours of human-transcribed data (i.e., gold transcriptions)
were also released, where we quantified that the transcription process can be significantly
accelerated by providing the annotators with automatically transcribed data (i.e., output
from an in-domain ASR system), rather than requiring them to produce transcriptions
from scratch. According to [7], the real-time factor (RTF; time needed to generate the gold
word-by-word transcription of the ATC audio with regard to its duration) for transcribing
the data can be reduced from 50 to 20. An overview of the composition of ATCO2 corpora
is given in Figure 1.

This paper covers several aspects and lessons learned (see Section 6) related to the
data collection and the transcription pipeline, including its primary actors. Also, it covers
the main AI-based systems that can be developed with the ATCO2 corpora, and we set
baselines on ASR and understanding.

The rest of the paper is organized as follows. Section 2 covers related work on
automatic speech recognition and understanding for ASR. We describe the ATCO2 system,
data collection pipeline, and the main contributions of this paper in Section 3. In Section 4,
we cover technical details about the data collection platform (front end and back end) and
how the community of volunteers interacts with them. In Section 5, we cover the main
technologies that can be developed with ATCO2 corpora. We conclude the paper and
discuss the main lessons learned in Section 6.
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Figure 1. ATCO2 corpora. Blue circles denote transcriptions only available for ATCO2 test set corpus.
Green circles denote transcriptions and metadata available for both ATCO2 test set and ATCO2
transcribed corpus sets. Taken from previous work in [7].

2. Early Work on Automatic Speech Recognition and Understanding in ATC

Recent work in ASR and understanding of ATC communications has been documented
for trainee’s ATCo training by AENA (Aeropuertos Españoles y Navegación Aérea) [10]
and MITRE corporation [11]; also including workload estimation with ASR systems [12].
In recent years, more research-oriented work has focused on pure ASR. For example,
ref. [13] established the first benchmark on ASR for different ATC communications-focused
databases. Furthermore, there has been a significant effort to integrate novel semisupervised
learning algorithms for boosting the ASR performance with surveillance data such as [14].
This supports the idea of the growing interest in research in ASR and understanding
towards ATC, with mature proof-of-concept engines that can assist ATCos in their daily
tasks. Our previous work related to the large-scale automatic collection of ATC audio data
from different airports worldwide was in [9]. Additionally, recent work targeted to improve
callsign recognition by integrating surveillance data into the pipeline has been explored
in [15] or, for instance, automating pilots report extraction with ASR tools [16].

Another line of work has been directed at open-sourcing ATC-related databases: for
US-based communications [17], in Czechia [18], and [19] for several accents in English.
Recently, there was an Airbus-led challenge [20] for ATC communications, with French-
accented recordings from France [21]. Private databases such as VOCALISE [22] and
ENAC [23] have also targeted ATC communications. For a general overview of ATC-
related databases, we redirect the reader to Table 1 in ref. [7], and for the databases released
by the ATCO2 project, to Table 1 in this paper.
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Table 1. Air traffic control communications corpora released by ATCO2 project. † Full database after
silence removal. †† Speaker accents depend on the airport’s location and on the airline origin (e.g.,
Air France in Australia may contain French-accented audio); accents of pilots are not known at any
time of the communication due to privacy regulations.

Database Details Licensed Accents Hours † Ref.
Released corpora by ATCO2 project

ATCO2 corpora Data from different airports and countries: public
corpora catalog.elra.info/en-us/repository/browse/
ELRA-S0484/ (accessed on 10 October 2023)

Several †† [7]

ATCO2-test-set Real life data for ASR and NLP research. X Several †† 4 [7]
ATCO2-T set ASR-based transcribed dataset. Real data for research

in ASR and NLU.
X Several †† 5281 [7,9]

Free access databases released by ATCO2 project
ATCO2-test-set-1h ‘ASR dataset’: public 1 h sample, a subset of ATCO2-

test-set. https://www.atco2.org/data (accessed on 10
October 2023)

X Several †† 1 [9]

ATCO2-ELD set ‘ELD dataset’: public dataset for English language de-
tection. https://www.atco2.org/data (accessed on 10
October 2023)

X Several †† 26.5 [24]

3. ATCO2 Corpora

It is well known that AI-based tools need large amounts of reliably transcribed data
during their training process. For instance, ASR or NLP tools for ATC could work better if
we had large-scale data. The ATCO2 corpora was designed to target this data scarcity issue
by solving four big challenges:

(1) Current corpora related to air traffic control are primarily focused on automatic
speech recognition. However, for an AI engine to be successfully deployed in the control
room, it must not only accurately transcribe ATC communication but also understand it.
This includes the ability to detect speaker roles (SRD) as well as extract and parse callsigns
and commands. The ATCO2 corpora provides a comprehensive solution to this challenge
by including detailed tags for SRD and callsign and command extraction. This, in turn, will
improve the accuracy and efficiency of AI-based systems in ATC operations.

(2) Out-of-domain ASR and NLP-based corpora transfer poorly to the ATC domain.
ATC communication follows an unique grammatical structure and employs a specific
set of the vocabulary defined by ICAO [25], making it a niche application. This poses a
significant limitation to the use of out-of-domain corpora (previous studies [13] have shown
that employing non-ATC related corpora such as LibriSpeech [26], CommonVoice [27] or
SWITCHBOARD [28], does not match the acoustics of ATC communication, and therefore
does not contribute substantially to ASR training). As such, the ATCO2 project collected
and publicly released a large amount of ATC-specific data to aid in the development of
ASR and understanding engines for ATC.

(3) The research community working on ATC is hindered by a severe lack of openly
available annotated data. To address this issue, the ATCO2 project has released a vast
corpus of over 5000 h of automatically transcribed data (i.e., ATCO2-T set), as well as 4 h of
manually annotated data (i.e., ATCO2-test-set-4h). It is worth noting from Table 1, that the
transcriptions generated by the automatic tools have been proven to be robust, with WERs
as low as 9%. These errors are achieved when training an ASR engine with ATCO2 corpora
only. See the prior results for the Malorca-Vienna-test set coming from the MALORCA
project in [7].

(4) There is no standardized metric to evaluate quality of nontranscribed data prior
to their transcription process. Currently, when a new corpus for ASR is in its collection
and labeling phase, few filtering stages are performed to ensure high-quality audio data
selection. In contrast, in Section 3.3, and specifically in Equation (1), ATCO2 uncovers the

216



Aerospace 2023, 10, 898

quality estimation that helped to select the best audio files for gold transcription generation
by humans.

3.1. ATCO2 System and Generalities

The ATCO2 system is described in Figure 1. During the collection of the ATCO2
corpora, we followed several preprocessing steps in order to normalize the generated
transcriptions. Here, we aim at minimizing errors produced by phonetic dissimilarities,
e.g., “descent to two thousand” and “descend two two thousand”. We performed several
text normalization steps in order to unify the gold and automatic transcriptions following
ICAO rules [25] and well-known ontologies for ATC communications [5]. A summary of
the transcription protocol is depicted in Figure 2. Additionally, we direct the reader to
a more detailed overview on text normalization and lexicon for transcript generation in
Section 3 of ref. [7]. Furthermore, the ATCO2 corpora are composed of ATCO2-T set corpus
and ATCO2-test-set corpus, described below:

• First, the ATCO2-T set corpus is the first ever release of a large-scale dataset targeted
to ATC communications. We recorded, preprocessed, and automatically transcribed
∼5281 h of ATC speech from ten different airports (see Table 2). To the best of the
authors’ knowledge, this is the largest and richest dataset in the area of ATC ever
created that is accessible for research and commercial use. Further information and
details are available in [7].

• Second, ATCO2-test-set-4h corpus was built for the evaluation and development of au-
tomatic speech recognition and understanding systems for English ATC communications.
This dataset was annotated by humans. There are two partitions of the dataset, as stated
in Table 1. The ATCO2-test-set-1h corpus is a ∼1 h long open-sourced corpus, and it
can be accessed for free at https://www.atco2.org/data (accessed on 10 October 2023).
The ATCO2-test-set-4h corpus contains ATCO2-test-set-1h corpus and adds to it ∼3 more
hours of manually annotated data. The full corpus is available for purchase through
ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484 (accessed on
10 October 2023).

Annotations rules 

(ontology)

ATC-related resources

Airline designators 

Runway numbers 

Tower Names 

Sectors 

Waypoints

Previous ATC datasets

LDC-ATCC 

UWB-ATCC 

AIRBUS-Challenge 

MALORCA 

ATCO2-test-set

Cheat Sheet

ATCO2-PL-set

ASR engine

Annotators

Figure 2. Transcription protocol. ATCO2 corpora follow a rigorous transcription protocol based on
previous ATC-related corpora and resources. Additionally, a cheat sheet for ATC transcript generation
was developed during the project. The cheat sheet is available in Appendix E.
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Table 2. Total accumulated duration. (in hours) of speech after voice activity detection per airport
in ATCO2-T set. † English language detection (ELD) (0–1) score. This score shows how confident
our ELD system is in detecting whether there is only English spoken inside the ATC communication.
Note that the first word for each name denotes the ICAO airport identifier.
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3.2. Data Collection Pipeline

The processing pipeline is implemented as a Python script that follows a configuration
file → worker.py. The configuration file allows us to modify the logic and flow of the
data in the pipeline on-the-fly. It allows parallelism, forking, and conditions. In principle,
worker.py consists of global definitions (constants), blocks (local definitions), and links
(an acyclic oriented graph) between blocks. The processing pipeline is given in Figure 3.
For instance, we address earlier implementations of each technology from the previous
work [9], e.g., segmentation and diarization, ASR, or named entity recognition (NER). All
the technologies and tools are encapsulated in BASH scripts with an unified interface.

The first row of blocks from Figure 3 refers to segmentation and demodulation. Initially,
an antenna and a recording device jointly capture the radio signal, which is divided into
segments containing portions where the transmission was “active”, and the silent parts
are not recorded (push-to-talk is used in ATC voice communication). This functionality
is part of the RTLSDR-Airband audio recording software, from which we dump the raw
I/Q signal. Second, we convert this complex I/Q radio signal into a waveform signal by a
software-defined radio CSDR. The first part is performed in the recording device, while the
second is performed at the OpenSky Network (OSN). The OSN is a nonprofit community-
based receiver network which has been continuously collecting air traffic surveillance data
since 2013. Unlike other networks, OpenSky keeps the complete unfiltered raw data and
makes them accessible to academic and institutional researchers).

Next, we perform “signal-to-noise ratio (SNR) filtering” (second row); the purpose
is to remove the recordings that are too noisy. In bad recording conditions, we can end
up in a situation in which the voice is not intelligible. The following step is “diarization”
(third row). In the automatically segmented data, some recordings contain more than one
speaker. This is a problem because we intend to automatically transcribe speaker turns
of single speakers. And, for subsequent NLP/SLU tasks, it is important to separate the
speaker turns as well. The diarization solves this by splitting the audio into segments with
single speakers and assigning them speaker labels. In the ASR step, we simply convert
“speech-to-text”. This is performed by our ASR system that we build with tools from the
Kaldi toolkit [29]. The outputs from this step are transcripts, which inevitably contain some
errors. To improve the accuracy of the transcripts, we use callsign lists from surveillance as
contextual information. The callsign lists come from the air traffic monitoring databases of
OpenSky Network. Further details can be found in Section 5.2.2 and [15].

Next, the transcripts are used as input for the English language detection (ELD) system.
The purpose is to be able to discard non-English audio data. The typical state-of-the-art
language identification system is based on acoustic modeling and uses audio as input. For
the ATC speech, we do not need to “identify” the non-English languages, so we developed
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a “lexical English detection system” which uses transcripts and confidence scores produced
by ASR as its inputs (see previous work at Interspeech in 2021 [24]). For ATC speech,
this worked better than the “traditional” acoustic language identification method. The
last automatic operation is “post-processing by NLP”. Currently, the pipeline performs
a callsign-code extraction step. It returns the callsign in ICAO format, like “DLH77RM”,
belonging to an aircraft. Finally, some processed data go through “human correction”,
and some data are kept with automatic labels. The former case produced ATCO2-test-set-
4h corpus, while the latter, ATCO2-T set corpus. A more detailed description of the data
collection flow and data transcription is given in Appendices C and D.

Download CSDR

Audio length
< 120s

Start
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error

Processed - 
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Adjust gain Media 
detection Audio length

VADSNRSpeech lengthSNR levelSNR
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ASR LID English 

likelihood
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thumbnails

for human 
annotation

Create
mp3

Create
JSON

English
 > 0.5

No

Yes

Yes
No

No

Yes

NoYes

Yes

No

ATCO2 on-line processing pipeline

Figure 3. ATCO2 workflow for processing data collected by a community of feeders. Initially, the
data are sent and stored on OSN servers. The audio data go through several modules to filter
out recordings with a high level of noise and too-long or too-short segments. Blue rectangles are
processes. The cyan arrow blocks are internal callback events, where the pipeline informs the master
node about progress and sends intermediate results. The orange rhombuses are conditions, where
intermediate results are taken into account (e.g., an SNR level), i.e., whether to continue (clean audio)
or stop processing. A final internal callback is run when the pipeline finishes. It triggers the API
to call the OSN server with the particular callback, for instance, the processing has finalized as OK
or ERROR.

3.3. Quality Estimation for Data Transcription

As mentioned at the end of Section 3.2, the captured, processed, and automatically
transcribed data (see Figure 3) can be annotated by humans. This in turn would generate
“gold transcriptions” that we use to evaluate the proposed ASR and NLP systems. The
ATCO2-test-set-4h corpus went through all these steps. As the data are continuously being
recorded by OSN, we need to select the most intelligible and clean data. We developed
a score that ranks the recordings depending on their quality. This score integrates seven
metrics that assess the quality of each recording present in ATCO2 corpora. For instance, we
used Equation (1) to measure, rank, and select the ATC communications with the highest
quality. Later, these recordings were shortlisted for human transcription (see Section 4.2).
The data annotators generated the ground truth transcripts and tags that are part of the
ATCO2-test-set-4h corpus. The ranking score is given as follows:
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Score = log(avgSNR + e) + log(numspk + e) + log
(

speechlen
audiolen

+ e
)
+

ELDscore × 3 + avgWordCon f × 3 + log(wrdcnt + e),
(1)

where

• avgSNR—provides average SNR of speech in range <0, 40>. SNR needs to be as high
as possible;

• numspk—provides the number of speakers in the audio in the range of <1, 10>. The
more speakers detected in audio, the better;

• speechlen—provides the amount of speech in seconds;
• audiolen—provides the overall audio length. More speech detected in audio is better;
• ELDscore provides “probability” of audio being English in the range <0.0, 1.0>. The

higher the ELD score, the better;
• avgWordCon f —provides average confidence of the speech recognizer <0.0, 1.0>. We

want data where the recognizer is confident. Higher is better;
• wrdcnt—provides the number of words spoken in the range of <0, ∼150>. The more

words, the better.

A breakdown of the outputs of these steps for a single day is given in Figure 4. For
instance, ∼0.6 h of data are selected for gold transcriptions from an initial 26 h pool
of audio data. We believe this is a robust quality scoring method because it gathers
information from different systems, e.g., ASR, SNR, and ELD estimation. A day-to-day
estimation of the output of each of these steps is available on the SpokenData website:
https://www.spokendata.com/atc (accessed on 10 October 2023).

Feeders audio
length

speech
length SNR

English
LID

>0.5>0dB>0.5s<120s

Quality
score 

>thr

Annotators

ATCO2-PL

ATCO2
test set

26 hrs 26 hrs 25 hrs 23 hrs 0.6 hrs20 hrs

Figure 4. Breakdown of data flow yield from raw data (recordings from data feeders) w.r.t the human-
annotated transcripts throughout the pipeline. This is a one-day snapshot from 9 February 2022.

3.4. Runtime Characteristics

We also measured the running time for individual components of our processing
pipeline. In Table 3, we list the relative time spent by each module, such as ASR and
speaker diarization; both accounting for 65% of the overall processing time. This disparity
compared to other modules is due to the fact that both are AI-powered modules, which, in
principle, needs more processing time. Other important parts are preprocessing, voice activ-
ity detection (VAD) segmentation, and ELD. Audio data preprocessing involves obtaining
data, demodulation by software radio, segmental gain control, detecting media format,
and plotting waveform. A key metric is the real-time factor of the whole pipeline. The
real-time factor is the ratio of “processing time” over “length of the audio”. Our processing
pipeline has a real-time factor of 4.47. In other words, the processing is computationally
demanding. For an average five-second-long recording, the processing time is 22 s. The
actual running times of each component for the “average” five-second-long recording are
shown in Table 3.
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Table 3. Processing time per component in the transcription pipeline. The values in the second
column are for an average 5.016 s long recording. The average was computed over 10,334 recordings
(14.4 h), recorded on 4 December 2021.

Processing Step Time [s] Percentage [%]
Preprocessing 2.5 11.6

VAD segmentation 2.4 11.1
SNR estimation 0.6 3.0

Diarization 7.1 32.6
Callsign expansion 0.5 2.1

Speech-to-text (ASR) 7.0 32.1
English detection 1.3 5.9

Callsign extraction 0.1 0.4
Post-processing 0.2 1.2

Total time 21.6 100.0

4. Collection Platform and Community of Volunteers

In this section, we summarize the data collection and distribution. In addition, a short
description of the roles involved in data processing is provided. We also cover some high-
level statistics about the collected data. First, data are captured and fed into the OpenSky
Network by the volunteers who operate their own receiver equipment (see Figure 5). These
individuals are often aviation enthusiasts with previous operational experience, or people
with an interest in aviation technology, e.g., conducting domain-related research. But
anyone with little to no background in aviation or technology can become a feeder. To
become a feeder, one must have an internet connection and access to a VHF receiver. An
affordable low-complexity setup is covered in the ATCO2 corpora paper [7] and the guide
for setting it up is provided https://ui.atc.opensky-network.org/set-up (accessed on 10
October 2023). It is important to recall that in some countries, it is prohibited by law
to record air traffic management (ATM) data. Readers interested in the legal aspect are
directed to the legal and privacy aspects for collection of ATC recordings section in [7].

Storage OSN

Feeders

ADS-B/VHF

antenna

Figure 5. Data feeders pipeline. The data users have set up a VHF receiver and feed data to OSN servers.

4.1. The Platform

The high-level architecture is given in Figure 6. As one can observe, the platform has
been divided into three distinct groups: (i) feeder equipment, (ii) back-end, and (iii) front-
end. The architecture was decided during the design phase of ATCO2, with the main
objective to achieve scalability of the entire system. That means keeping the complexity
relatively low within all the groups, which allows it to

• Support a similar number of users to the current OpenSky Automatic Dependent
Surveillance–Broadcast system (ADS-B);

• Keep the feeder equipment simple and affordable;
• Provide data to different types of users in a simple and intuitive way;
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• Interface external services (e.g., voice annotation) in a simple and intuitive way;
• Keep maintenance and error handling as simple as possible.

A better overview of the OSN platform is also listed in Appendix B. As mentioned
above, the platform has been divided into three parts. Below, we describe each of these
platform’s groups.

Back-end

Ingestion API

Aggregation layer

Serving API

Scheduled jobs

Feeder 
Equipment

Front-end

Web based UI

External 
Annotation 

Platform

Figure 6. The high-level architecture of the data collection platform.

Feeder equipment: the main task of the feeder equipment is to capture the conver-
sation between the pilot and the ATCo and feed the data, together with some relevant
metadata, to the back-end. For the recording part, we recommend using RTLSDR-Airband
together with RTLSDR dongle. RTLSDR is a set of tools that enables USB dongles based on
the Realtek RTL2832U chipset to be used as cheap software defined radios, given that the
chip allows transferring raw I/Q samples from the tuner straight to the host device (see
further documentation in https://osmocom.org/projects/rtl-sdr/wiki/Rtl-sdr; accessed
on 10 October 2023). The latter is an affordable and widely used combination within the
aviation enthusiast community for this exact purpose—to capture and stream ATC voice.

The feeder software is responsible for transmitting the recordings from the receiver to
the remote server. It is a rather simple piece of software that monitors the output directory
of the RTLSDR-Airband and transfers any new data it finds to the back-end using a gRPC
(gRPC; remote procedure calls) connection. The fact that the feeder software only looks for
specific types of data from the output folder suggests that the feeder is free to choose any
other software for capturing and storing the voice data. Care must be taken to assure that
the output is suitable for the feeder software. A simple, step-by-step guide is provided to
simplify the setup process. It can be found at https://ui.atc.opensky-network.org/set-up
(accessed on 10 October 2023).

Back-end: the main tasks for the back-end are (i) to store recordings, transcripts,
and any other relevant metadata, and (ii) to provide interfaces for external users. The
external users in this are data feeders, transcription service providers, data users, or any
other parties contributing to the dataset or making use of it. The back-end is deployed
on Kubernetes, an open-source container orchestration system. As one can observe from
Figure 6, there are several processing layers involved. These layers are as follows:

• Ingestion API: receives recording segments and metadata and queues them for pro-
cessing in Kafka/S3 compatible object storage;

• Aggregation layer: converts raw data to flac audio, stores metadata, and triggers
transcription using Kafka Streams, S3, and Serving API;

• Serving API: provides external interfaces to consume metadata, store, and consume
transcript and statistics;

• Scheduled jobs: run processes that are not part of the streaming process like statistics
aggregation and data housekeeping.

Interfacing the back-end is performed using API, which is well documented in https://api.
atc.opensky-network.org/q/swagger-ui (accessed on 10 October 2023). In order to access
the back-end and make use of the available APIs, one needs to register on https://auth.
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opensky-network.org/auth/ (accessed on 10 October 2023), contact OpenSky Network
(mailto: contact@opensky-network.org), and give a short description of what one needs
the access for.

Front-end: the front-end is a web-page (https://ui.atc.opensky-network.org/; ac-
cessed on 10 October 2023) and it provides access to public stats, links to documentation,
e.g., API documentation, and external web pages, e.g., SpokenData transcription service.
In addition, this is a place for an user to set up their receivers, see some statistics about the
receiver performance, and so on.

Statistics: since the public opening of the service (5 March 2023), the ATCO2 project
has recorded speech from 24 different airports in 14 different countries. In Figures 7 and 8,
names of countries and airports, together with corresponding recording lengths, are shown.
Please note that only the airports/areas with the length of regrinding ≥ 1 h are included.
This also applies for the ATCO2 corpora released in ELDA.
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Figure 7. Length of recordings per country from the beginning of the service until 5 March 2023.
Countries where the length of recordings is longer than 1 h are given. Note that some countries (e.g.,
United States) were not part of the official release of the ATCO2 corpora (see Table 2). Still, they are
currently being collected in the OSN Platform.
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Figure 8. Length of recordings per airport from the beginning of the service until 5 March 2023. Airports
where the length of recordings is longer than 1 h are given. LKPR: Vaclav Havel Airport Prague; LZSH:
Zurich Airport; LSZB: Bern Airport; KAUS: Austin-Bergstrom International Airport; KROC: Frederick
Douglass Greater Rochester International Airport; YBBN: Brisbane Airport; LKTB: Brno Airport; KDNN:
Dalton Municipal Airport; EPLB: Lublin Airport; EHAM: Amsterdam Airport Schiphol.
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4.2. Data Annotators

Apart from the data feeder, there is another type of volunteers who have contributed
to the project and will continue to contribute in the future. These are called “Annotators”.
The data annotators are volunteers who write down the transcripts of the ATC voice
communications, including assigning speakers and annotating named entities, i.e., callsigns
and commands. For the ATCO2 project, we relied on both volunteers and paid transcribers.
Our data processing pipeline (as seen in Figure 3) generates transcripts and NLP tags for
each communication. By generating transcriptions with AI tools, we are able to speed up the
overall transcription process (if you are interested in becoming an annotator, please create
an account on the SpokenData transcription platform: http://www.spokendata.com/atco2;
accessed on 10 October 2023). The amount of human transcribed data is the package of a
four-hour test set, i.e., ATCO2-test-set-4h corpus. The data annotators are the final actors
involved in the transcription step, as shown in Figure 4.

5. Technologies

In this section, we cover the main tools developed with the ATCO2 corpora. We also list
some potential topics that can be explored with it. Moreover, note that the ATCO2 corpora
are not limited to the fields covered in this paper e.g., ASR or NLP, but also can be used for
text-to-speech (TTS), which is somehow opposite to ASR. We expect the community will
build on top of ATCO to foster and advance speech and text-based technologies for ATC.

5.1. Automatic Speech Recognition

One of the principal components of the ATCO2 project is the strong ASR system,
used in order to provide high-quality automatic transcriptions for the collected ATC data.
An ASR system is trained to predict the best text translation for the input acoustic signal.
Formally speaking, ASR aims to find the best probability candidate output sequence of
words from a set of all possible word combinations (or sentences) in a language given a
noisy acoustic observation sequence. End-to-end ASR models learn a direct mapping of
speech S, to the output text W:

Ŵ = argmax
W∈V∗

p(W|S).

The hybrid (conventional) ASR systems combine three separately trained models:
acoustic model (AM), pronunciation model, and language model (LM). The model calcu-
lates the conditional probability p(W|S), where W is a sequence of words (W = w1, . . . , wn),
S is a sequence of input feature vectors representing the acoustic observations (S = s1, . . . , st),
and V is the vocabulary of all possible words [30,31] or subwords [32], as shown in
Equation (4).

Ŵ = argmax
W∈V∗

p(W|S) (2)

= argmax
W∈V∗

p(S|W)p(W) (3)

= argmax
W∈V∗

∑
P

p(S|P)p(P|W)p(W), (4)

where p(S|P) is an AM, p(P|W) is a pronunciation model, and p(W) is an LM; we use
V∗ to represent the collection of all word sequences formed by words in V . One of the
advantages of conventional pipeline models is a more transparent optimization of an
objective function [33]. Moreover, the LM is trained with unpaired text data and can be
easily adapted to a specific domain. This gives conventional models more flexibility and
makes them convenient for use in industrial projects, such as ATC.

5.1.1. Training Data Configuration

To measure the effectiveness of using automatically transcribed data (ATCO2-T set)
versus using fully supervised gold transcriptions, we defined three training scenarios.
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• Scenario (a) only supervised data: we employ a mix of public and private supervised
ATC databases (recordings with gold transcriptions). It comprises ∼190 h of audio
data (or 573 h after speed perturbation);

• Scenario (b) only ATCO2-T 500 h dataset: we use only a subset of 500 h from the
ATCO2-T corpus (see introductory paper [7]);

• Scenario (c) only ATCO2-T 2500 h dataset: same as scenario (b), but instead of only
using 500 h subset, we use five times more, i.e., a 2500 h subset. This subset is only
used to train a hybrid-based ASR model (CNN-TDNNF; convolutional neural network
and time-delay neural network) to test the boosting experiments in Section 5.2.2.

5.1.2. Test Data Configuration

Two ATCO2 test sets are used for ASR evaluation, as shown in Table 4: ATCO2-test-
set-1h (in short ATCO2-1h) and ATCO2-test-set-4h (in short ATCO2-4h). The same test sets
are used for boosting experiments presented in Section 5.2.2.

Table 4. WER results for the public ATCO2 test sets with CNN-TDNNF models trained on different
data; this includes from scenario (a) to scenario (c).

Model Test Sets
CNN-TDNNF ATCO2-1h ATCO2-4h

Scenario (a) only supervised 573 h dataset 24.5 32.5
Scenario (b) only ATCO2-T 500 h dataset 18.1 25.1
Scenario (c) only ATCO2-T 2500 h dataset 17.9 24.9

5.2. Conventional ASR

To obtain automatic transcriptions of the best possible quality for ATCO2 corpora
audio, we use a strong hybrid model trained on ATC data only. We train a hybrid-based
model for each of the scenarios described above. For scenario (a), an AM was built to
include all available 190 h datasets, speech augmentation accounting for 573 h of data. The
model dictionary consists of 30,832 words coming from diverse sources. This includes (i) a
list of airline designators for callsigns taken from Wikipedia: https://en.wikipedia.org/
wiki/List_of_airline_codes (accessed on 10 October 2023); (ii) all five-letter waypoint names
in Europe retrieved from the Traffic project, see https://pypi.org/project/traffic/ (accessed
on 10 October 2023); (iii) additional words, such as countries, cities, airport names, airplane
models and brands, and some ATC acronyms. For training the acoustic model, we use
the Kaldi toolkit [29]. The system follows the standard Kaldi recipe, which uses MFCC
and i-vectors features [34] with time-delay neural networks (TDNN) [35,36]. The standard
chain training is based on lattice-free maximum mutual information (LF-MMI [37], which
includes threefold speed perturbation and one-third frame subsampling). The acoustic
model is a CNN-TDNNF [38], which comprises a convolutional network and a factorized-
TDNN. The LM is 3G trained on the same data as the acoustic model with additional
text data coming from additional public resources such as airlines names, airports, ICAO
alphabet, and way-points in Europe.

Results and analysis: the results are presented in Table 4. We compared three mod-
els trained with the same conventional CNN-TDNNF architecture but on different data:
scenarios (a), (b), and (c) (see Section 5.1.1). The model (a) in Table 4 is trained on the
“out-of-domain” for ATCO2 but supervised data. The models (b) and (c) are trained on the
“in-domain” ATCO2 data and the difference is only in the size of the training set: 500 h vs.
2500 h. We can see that training on completely unsupervised data yields good performance
in comparison to (a). Increasing the size of unsupervised data from 500 h to 2500 h, however,
does not bring too much improvement: the WER goes from 18.1% to 17.9% and from 25.1%
to 24.9% only for ATCO2-1h and ATCO2-4h, respectively.

Our main hypothesis is that ATCO2 test sets contain higher levels of noise compared
to the audio data present in (a), i.e., mainly clean data from ATCos. Moreover, ATCO2 test
sets also contain speech from pilots collected via VHF receivers, which in turn degrades the
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SNR levels, i.e., reduced audio quality. Hence, when the system is trained on “clean data”,
i.e., scenario (a) and later tested on ATCO2, it creates a large train–test set mismatch. Yet,
when we use ATCO2 training data, scenario (b) or scenario (c), this mismatch is reduced,
and therefore we obtain substantially better results.

5.2.1. End-to-End ASR

Differently from hybrid-based ASR, there exists another paradigm for performing
ASR [39], named end-to-end (E2E) ASR [40]. Here, we aim at directly transcribing speech to
text without requiring alignments between input features and output words or characters
(i.e., standard procedure in hybrid-based ASR); see Equation (4). Recent work on encoder–
decoder ASR has shown that this step can be removed [41]. E2E can be divided into
connectionist temporal classification (CTC)-based [42], attention-based encoder–decoder
modeling [43], or hybrid [44]. Previous work based on self-supervised learning [45] for
ASR includes Wav2Vec2.0 [46], vq-Wav2Vec [47], and, most recently, WavLM [48] and
multilingual XLS-R [49] models. E2E ASR aims at reducing the expert knowledge needed.
This makes the overall ASR development simpler; thus, it could have a significant impact
on ATC [50]. This work focuses on data novelty (including their collection and preparation)
rather than investigating (i) different E2E architectures for ASR, e.g., Conformer [51],
HyperConformer [52], Conmer [53], or BranchFormer [54]; or (ii) toolkits for E2E ASR such
as SpeechBrain [55], ESPnet [56], NeMo [57], or WeNet toolkits [58]. Therefore, we leave
these lines of research for future work.

5.2.2. Callsign Boosting

To further improve the prediction made by an ASR system, along with speech input,
one can use other information available from context. For the ATC domain, such context
information may be the data received from radar. Every moment, radar registers aircraft
that are currently in the airspace, listing unique identifiers of those aircraft, i.e., “callsigns”.
With the radar data, we know exactly what callsigns are especially likely to appear in
the conversation. This knowledge allows us to bias the system outputs towards these
registered callsigns and to increase the probability that they are recognized correctly. A
callsign is typically a sequence of an ICAO airline identifier, letters, and digits, which
in speech turns into a sequence of words. In ASR, the target sequences of words can be
boosted during decoding with WFST (weighted finite state transducer) by adjusting the
weights in the prediction graphs, called “lattices”. The rescoring technique with WFST was
proposed earlier and applied for biasing towards use’s play lists [59], contact names [60],
and named entities [61]. Recently, a similar biasing approach has proved to be useful in
improving callsign recognition [9]. The rescoring of lattices is performed with the finite
state transducer (FST) operation of composition between lattices produced by an ASR
system and an FST created with the target transcript and discount weights (Equation (5)):

biased_Lattices = Lattices ◦ biasing_FST (5)

Biasing the lattice toward the context callsigns usually allows us to considerably im-
prove their recognition in the final outputs (Table 5). The results of different experiments on
the ATC data proved that applying the lattice rescoring method on top of ASR predictions
leads to higher accuracy of automatic transcriptions, first of all, callsigns [14]. Therefore,
lattice rescoring was used for all transcriptions of the ATCO2 data.
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Table 5. Results for boosting experiment on ATCO2 corpora. Results are listed for the CNN-TDNNF
model trained with either all supervised data or 500 h or 2500 h of ATCO2 corpora. The top results
per block are highlighted in bold. The best result per column is marked with underline. † 1h public
test set. ‡ 4h full test set. Results are obtained with offline CPU decoding. ¶ word error rates only on
the sequence of words that compose the callsign in the utterance. CallWER: callsign word error rate;
ACC: accuracy.

Boosting
ATCO2-test-set-1h † ATCO2-test-set-4h ‡

WER CallWER ¶ ACC WER CallWER ¶ ACC
scenario (a) only supervised dataset

Baseline 24.5 26.9 61.3 32.5 36.7 42.4
Unigrams 24.4 25.5 63.2 33.1 35.0 45.8
N-grams 23.8 23.8 66.4 31.3 33.7 47.9
GT boosted 22.9 19.1 75.2 29.7 29.1 58.5

scenario (b) only ATCO2-T 500 h dataset
Baseline 18.1 16.2 71.2 25.1 24.8 62.6
Unigrams 19.1 14.6 74.2 26.0 22.8 65.6
N-grams 17.5 13.5 75.3 24.3 21.4 66.6
GT boosted 16.3 6.9 88.9 22.5 13.0 82.9

scenario (c) only ATCO2-T 2500 h dataset
Baseline 17.9 16.7 70.5 24.9 24.2 62.0
Unigrams 18.3 14.4 73.8 25.6 22.0 65.9
N-grams 17.3 14.2 74.3 24.3 21.1 66.5
GT boosted 15.9 6.5 89.4 22.2 12.5 83.9

Results and analysis: in Table 5, we report the results for the out-of-domain (ATC
supervised) and in-domain (ATCO2-500 h/2500 h) ATC models. Both acoustic models are
trained with CNN-TDNNF architecture following the standard Kaldi recipe, as described
in Section 5.2. The results are reported with three metrics: WER (word error rate), Call-
WER (WER calculated on the sequence of n-grams that correspond to callsigns only), and
ACC (accuracy).

To rescore a decoding lattice according to the current context, we perform the following
steps: (1) we receive all the callsigns registered by the radar at the current timestamp in the
ICAO format; (2) we expand the ICAO callsigns to word sequences to include all possible
callsign variations, i.e., ways this callsign can be spoken; (3) we use the expanded callsigns
to bias the decoding lattice towards the current context. See our previous work [15] for
more details on callsign verbalization.

Biasing multiple callsigns registered by the radar, compared to biasing only a ground
truth (GT) callsign, can be used in a real-life scenario and with real-time ASR. To allow it,
a new contextual FST with expanded callsigns is generated on the fly every time when
new data come from radar. The results of biasing a GT callsign are given in Table 5 to
illustrate the oracle performance of the biasing method. Overall, decoding with n-grams
biasing always helps to achieve better performance, especially for callsigns, with a relative
improvement of 15.0% and 12.8% for callsign recognition and of 3.4% and 2.4% for the
entire utterance on ATCO2-test-set-1h and ATCO2-test-set-4h test sets, respectively.

The size of biasing FST depends on the number of callsigns and their variations we
want to boost. Too many callsigns may decrease the effectiveness of the biasing method,
as the more nontrue callsigns are boosted, the less the correct sequence is prominent. The
previous results show that the optimal size of biasing FST highly depends on the data, but
generally, the performance begins to degrade when the number of biased word sequences
exceeds 1000 [62]. For our experiments, we have, on average, 214 biased callsigns variations
per utterance in the ATCO2-test-set-4h and 140 biased callsigns variations per utterance in
the ATCO2-test-set-1h corpus.
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5.3. Natural Language Understanding of Air Traffic Control Communications

Natural language understanding (NLU) is a subfield of NLP that focuses on the ability
to understand and interpret human language. NLU involves the development of algorithms
and models that can extract meaning and intent from text and/or spoken communication.
NLU involves several subtasks, including (i) named entity recognition [63], which aims at
identifying entities in text, such as people, places, and organizations [64]; (ii) part-of-speech
tagging (POS), identifying the grammatical role of each word in a sentence [65], similar to
sequence classification (see Section 5.3.2); (iii) sentiment analysis, identifying the emotional
tone of a piece of text [66]; (iv) relationship extraction, identifying the relationships between
entities in text [67]; (v) question answering, understanding, and answering natural language
questions [68]. The following subsections cover each of the proposed NLU submodules
that can be developed with ATCO2 corpora, like the ones presented in Figure 9.

BERT
Text encoder

ASR 

Audio

Transcript

ELD NLU SpkRoleID RBED

English: 0.9

Callsign

command

values

ATCO  

PILOT

<s> <atco>...
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Figure 9. Main automatic speech recognition and understanding tasks that can be achieved with
the ATCO2 corpora. ELD: English language detection; NLU: natural language understanding, e.g.,
callsign highlighting; SPKRoleID: speaker role identification; RBED: read-back error detection.

5.3.1. Named Entity Recognition for Air Traffic Control Communications

In ATC communications, NLU can be used to automatically analyze and interpret
the meaning of spoken messages between pilots and ATCos, which can aid ATCos in
downstream tasks, such as assisting in identifying emergency situations and other critical
events. NLU can help to extract important information, such as flight numbers, callsigns,
or airport codes, which in turn can aid ATCos to manage traffic more efficiently.

Overall, the use of NLU in ATC helps improve communication accuracy and efficiency,
aids in reduction of ATCos’ workload by prefilling aircraft radar labels, and provides
valuable data for analysis and decision making. In this work, one of the main tasks is to
understand and extract high-level information within ATC communication. Therefore, we
develop an NER system tasked to extract this information, as depicted in Figure 10a. For
instance, consider the following transcribed communication (taken from Figure 1):

ASR transcript: runway three four left cleared to land china southern three two five,

would be converted to high-level entity format with the NER system to:

Output: <value>
:::::::
runway

:::::
three

:::::
four

:::
left </value> <command> .. . . . . . . .cleared. . . .to . . . . . .land </com-

mand> <callsign> china southern three two five </callsign> .

In this work, we developed two systems based on transformers [69] to extract and
tag this information from ATC communications, i.e., a pretrained BERT [70] model and
RoBERTa [71] model.

Experimental setup: we fine-tune a pretrained BERT and RoBERTa model on the NER
task, as shown in Figure 9). We employed the pretrained version of BERT-base-uncased [70]
with 110M parameters, URL: https://huggingface.co/bert-base-uncased (accessed on 10
October 2023). Also, the pretrained version of RoBERTa-base [71] is composed of 123M
parameters, URL: https://huggingface.co/roberta-base (accessed on 10 October 2023).
We download the pretrained models from HuggingFace [72,73]. For training, we use
the full ATCO2-test-set-4h, which contains ∼3k sentences. In this dataset, each word is
annotated together with a predefined class, as follows: callsign, . . . . . . . . . . . .command,

:::::
values, and
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:::::
UNK (everything else). In order to fine-tune the model, we append a layer on top of
the BERT model by using a feedforward network with a dimension of 8 (we define two
outputs per class, see the class structures in Section 3.3 of ref. [8] and in [15]). Due to
the lack of gold transcriptions, we perform a fivefold cross-validation scheme to avoid
overfitting. The reader interested in developing their own NER system for ATC is redirected
to the open-source GitHub repository of the ATCO2 corpora (GitHub repository: https:
//github.com/idiap/atco2-corpus; accessed on 10 October 2023). We fine-tune each model
on an NVIDIA GeForce RTX 3090 for ∼10 k steps. During experimentation, we use a
linear learning rate scheduler with an initial learning rate of γ = 5× 10−5, dropout [74] of
dp = 0.1, and GELU (Gaussian error linear unit) activation function [75]. We also employ
gradient norm clipping [76] for regularization and AdamW as optimizer [77]. Each model
during the cross-validation scheme uses an effective batch size of 32.
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Figure 10. (a) Named entity recognition and (b) speaker role detection module based on sequence
classification (SC). Both systems are based on fine-tuning a pretrained BERT [70] model on ATC data.
The NER systems recognize callsign, command, and values, while the SC assigns a speaker role to
the input sequence. Taken from [7].

Evaluation metric: we evaluate both BERT and RoBERTa NER systems with a binary
classification metric named, F-score. Particularly, the F1-score, defined in Equation (8),
represents the harmonic mean of precision and recall. Recall, as defined in Equation (7), is
the ratio of TP to all samples that should have been identified as positive (including false
negatives (FN)). Precision, as described in Equation (6), is the ratio of true positive (TP)
results to all positive results (including false positives (FP)):

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(8)

Results and analysis: the NER system’s performance is evaluated on the ATCO2-test-
set-4h corpus using a fivefold cross-validation scheme, with five fine-tuning runs using
different training seeds. Table 6 presents the performance metrics for callsign, command,
and values classes of two transformer-based [69] models, namely, BERT-base and RoBERTa-
base. Although both models achieve similar F1-scores, we provide analysis for the BERT-
based NER system, which achieves an F1-score of over 97% for the callsign class, while the

. . . . . . . . . . . . .command and
::::::
values classes lag behind with F1-scores of 81.9% and 87.1%, respectively.

We hypothesize that the command class contains higher complexity when compared to the
other two classes, values and callsigns. Values are mostly composed of defined keywords
(e.g., flight level) followed by cardinal numbers (e.g., “one hundred”), while callsigns
follow a well-defined structure of airline designators and a set of numbers or letters spoken
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in ICAO format [25]. These characteristics make it easier for the NER system to correctly
detect them.

One potential method for increasing the performance of the NER system for the
command and values classes is to incorporate plausible commands and values in real time,
depending on the situation of the surveillance data. This can be achieved using the boosting
technique, as described in Section 5.2.2. Although the results with boosting callsigns are
reported in Table 5, further investigation is needed to assess the impact of boosting on the
command and values classes.

Table 6. Different performance metrics for callsign, command, and values classes of the NER
system. Results are averaged over a fivefold cross-validation scheme on ATCO2-test-set-4h cor-
pus in order to mitigate overfitting. We run five-times fine-tuning with different training seeds
(2222/3333/4444/5555/6666). Results are reported on two transformer-based models. @P, @R, and
@F1 refer to precision, recall, and F1-score, respectively.

Model
Callsign Command Values

@P @R @F1 @P @R @F1 @P @R @F1

Bert-base 97.1 97.8 97.5 80.4 83.6 82.0 86.3 88.1 87.2
RoBERTa-base 97.1 97.7 97.5 80.2 83.7 81.9 85.6 88.6 87.1

5.3.2. Text-Based Speaker Role Detection

Sequence classification (SC) is a type of machine learning (ML) task that involves
assigning a label or a category to a sequence of data points [78,79]. The data points in the
sequence can be of various types, such as text, audio, or numerical data, and the label
assigned to the sequence can also be of different types, such as binary (e.g., positive or
negative sentiment [66]) or multiclass. Sequence classification can also be used to automati-
cally classify ATC communication sequences into various categories. This technique can
be applied to both audio and text data, making it a versatile tool to provide a high-level
understanding of the communication at hand.

In scenarios where only a monaural communication channel exists, it can be challeng-
ing to recognize the identity of the speaker. Hence, it is especially important to distinguish
between the ATCo and the pilot over the target communications. As a potential solution,
we propose an alternative approach that utilizes a speaker role detection (SRD) system
based on SC. The system receives text as an input, and it returns as output a category where
the communication falls, either uttered by the ATCo or the pilot. In recent years, there has
been a growing interest in using deep learning techniques, such as the transformer-based
models [69], to improve the performance of SC for SRD in ATC communications. Here, we
ablate three types of such models, (i) BERT [70], (ii) RoBERTa [71], and (iii) DEBERTA [80].
These models have been shown to achieve state-of-the-art performance on a wide range of
sequence classification tasks, including SRD for ATC. The proposed SRD is illustrated in
Figure 10b.

Overall, the SRD and speaker diarization (see Section 5.3.3) tasks can leverage the fact
that ATC dialogues follow a well-defined lexicon and dictionary with simple grammar.
This standard phraseology has been defined by the ICAO [25] for ATCos. The main idea
is to guarantee safety and reduce miscommunications between the ATCos and pilots.
Therefore, previous work has shown the potential in performing SRD in an E2E manner on
the text-level, as presented here (see in [8,81]).

Experimental setup: he SRD system is built on top of pretrained models (BERT [70],
RoBERTa [71], and DEBERTA [80]), which are downloaded from HuggingFace [72,73].
Here, the experimental setup is exactly the same as the one described for the NER system,
including the training hyperparameters. For further details, we redirect the reader to
Section 5.3.1. Still, the SRD model is fine-tuned on the SC rather than on the NER task.
Further, we define an output layer with two units (classes): one for ATCo and one for pilot.
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Results and analysis: we evaluate the SRD system on ATCO2-test-set-4h corpus.
Differently from the NER system, here, we have access to two training corpora. (1) The
Air Traffic Control Corpus (LDC-ATCC) corpus, see URL: https://catalog.ldc.upenn.edu/
LDC94S14A (accessed on 10 October 2023). It consists of audio recordings in the area of
ASR for air traffic control communications. We use the metadata along the transcripts to
perform research on NLU for ATC, i.e., speaker role detection. The data files are sampled at
8 kHz, 16 bit linear, with continuous monitoring and without squelch or silence elimination.
(2) the UWB-ATCC corpus by the University of West Bohemia, which can be downloaded
for free at the following URL: https://lindat.mff.cuni.cz/repository/xmlui/handle/1185
8/00-097C-0000-0001-CCA1-0 (accessed on 10 October 2023). The UWB-ATCC corpus
contains recordings of air traffic control communication. The speech is manually transcribed
with the speaker information; thus, it can be used for speaker role detection) datasets. We
evaluate the SRD under two considerations: (i) ablations of different pretrained models for
SRD on ATC communications, and (ii) low-resource and incremental training scenarios.

(i) Analysis of the Impact of Pretrained Models and Training Data Type. In this
scenario, we evaluate the impact of pretrained models and training data on the SRD task
for ATC data. To this end, we compare the performance of three transformer-based [69]
models, including BERT, RoBERTa, and deBERTa-V3, trained on two different corpora,
LDC-ATCC and UWB-ATCC, and evaluate them on the ATCO2-test-set-4h corpus. The
F1-scores for SRD are reported separately for ATCo and pilot speakers in Table 7. Our
results show that all the models achieved comparable F1-scores, ranging from 87–88% for
ATCo and 84–85% for pilots. These findings suggest that the SRD task for ATC data is not
significantly sensitive to the choice of pretrained models. However, we observe that models
trained on UWB-ATCC outperform those trained on LDC-ATCC, with up to 4% absolute
improvement in F1-scores. For instance, BERT-model with LDC-ATCC→ UWB-ATCC
gives a comparison of 82.4%→ 86.2% for ATCo and 79.2%→ 83.2%, for Pilot. Additionally,
we find that combining both datasets leads to a 1% absolute improvement in F1-scores.
Overall, our study highlights the importance of selecting appropriate training data for
the SRD task in ATC data and suggests that using multiple datasets can lead to improved
performance. The findings also suggest that the choice of pretrained models has a relatively
minor impact on the SRD task for ATC data.

Table 7. ATCO/PILOT F1-scores for speaker role identification based on full ATC utterances for
ATCO2-test-set-4 test set. Each utterance represents one sample. Metrics reported with three different
transformer-based models (BERT [70], RoBERTa [71], deBERTa-V3 [80]). All models are the “base”
version, e.g., bert-base. Numbers in bold refer to the top performance per split, i.e., ATCO or
PILOT. Results are averaged over a fivefold cross-validation scheme on ATCO2-test-set-4h corpus in
order to mitigate overfitting. Each round of fine-tuning is run five times with different training seeds
(2222/3333/4444/5555/6666).

Training Corpora BERT DEBERTA ROBERTA
ATCO PILOT ATCO PILOT ATCO PILOT

LDC-ATCC 82.4 79.2 82.4 79.6 84.0 80.2
UWB-ATCC 86.2 83.2 86.8 84.0 87.0 82.8

↪→ + LDC-ATCC 87.6 85.2 88.8 85.8 88.0 84.2

(ii) Analysis of the Impact of Data Quantity on Speaker Role Detection. In this study,
we aim to evaluate the impact of the number of text samples on the performance of SRD.
The results of this analysis are illustrated in the left panel of Figure 11, where the F1-score
on the ATCO2-test-set-4h is plotted against the number of samples in a logarithmic scale
on the x-axis. Interestingly, we found that as few as 100 samples are necessary to achieve
a reasonably good F1-score of 60% on SRD. Notably, the UWB-ATCC appears to be more
informative for the BERT model, which achieves an F1-score of 71% with only 100 training
samples. Increasing the training data to 1000 samples further improves the performance,
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resulting in F1-scores near 80% (LDC-ATCC + UWB-ATCC). These findings are significant,
considering that the gold transcription of ATC communications is generally expensive
and time-consuming. In the right panel of Figure 11, we present a box plot that shows
the variation of the BERT model’s performance when fine-tuned on SRD with different
training seeds. Each box represents the variation of the model between the ATCo and
pilot subsets, over the fivefold cross-validation scheme. Overall, the results indicate that
increasing the training data leads to better performance and more consistent results. These
observations highlight the importance of selecting a suitable training set size for speaker
role detection tasks.
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Figure 11. Metrics for the speaker role detection system (introduced in [7]). Metrics are reported only
on ATCO2-test-set-1h corpus with a bert-base-uncased model trained with different datasets from
Table 1. Left plot: ablation of the F1-score versus the number of samples used to train the system. Right
plot: F1-score for models trained with different training seeds. The box plot depicts the performance
variability when splitting the test set into ATCo and pilot subsets.

5.3.3. Text-Based Diarization

In addition to only detecting roles in a given ATC communication (e.g., SRD), there
are cases where multiple segments end up in the same recording/communication. The
task that solves this issue is known as speaker diarization (SD). SD answers the question
“who spoke when?”. Here, the system receives an audio signal or recording (or text, in our
case) and detects the speaker changes or segmentation and the speaker role. The main
parts of an SD system are (i) segmentation, (ii) embedding extraction, (iii) clustering, and
(iv) labeling (similar to SRD). SD is normally performed on the acoustic level, and previous
work based on mel filterbank slope and linear filterbank slope was covered in [82]. Speaker
discriminative embeddings such as x-vectors are investigated in [83], and, more recently, a
variational Bayesian hidden Markov model (VBx) was investigated in [84], which is the SD
system used during the data collection stage of ATCO2 (see Section 3.2). State-of-the-art
SD systems are based on the E2E paradigm, named E2E neural diarization (EEND) [85].
This approach was introduced in [86] where an SD model is trained jointly to perform
extraction and clustering [87]. Here, differently from SRD, we only used the BERT [70]
pretrained model.

Experimental setup: The SD system is built on top of a pretrained BERT model down-
loaded from HuggingFace [72,73]. As in the NER and SRD system, here, the experimental
setup is the same; this also includes the training hyperparameters. For further details we
redirect the reader to Section 5.3.1. The SD model is fine-tuned on the NER task, where each
speaker role (ATCo or pilot) is a class. Therefore, we have two tags per class, accounting
for four classes in total. Readers are directed to our paper on text-based SD presented at
The 2022 IEEE Spoken Language Technology Workshop (SLT 2022), see [8].

Evaluation metric: to score the text-based SD system, we use the Jaccard error rate
(JER) metric. JER is a recent metric introduced in [88] that aligns with speaker diarization.
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JER aims at avoiding the bias that the predominant speaker might cause, i.e., JER evaluates
all speakers equally. The JER is defined in Equation (9):

JER = 1− 1
#speakers ∑

speaker
maxcluster

|speaker∩ cluster|
|speaker∪ cluster| , (9)

where (i) speaker is the selected speaker from reference and (ii) maxcluster is the cluster from
the system with maximum overlap duration with the currently selected speaker.

Results and analysis: we evaluate the SRD system on ATCO2-test-set-4h corpus. Dif-
ferently from the NER system, but similar to SRD, here, we have access to two training
corpora: LDC-ATCC and UWB-ATCC datasets. We evaluate the SD under one considera-
tion: (i) low-resource and incremental training scenario.

(i) Analysis of the Impact of Data Quantity on Text-based Speaker Diarization In
this study, we aim to evaluate the impact of the number of text samples on the performance
of SD. The results of this analysis are illustrated in the left panel of Figure 12, where the JER
(the lower the better) on the ATCO2-test-set-4h is plotted against the number of samples
in a logarithmic scale on the x-axis. We found that as few as 100 samples are necessary to
achieve a JER score of 45.6% (LDC-UWB). Similar to SRD, the UWB-ATCC dataset seems
to be more informative in the SD system. For instance, under the 1000 samples scenario,
we noted a 5% absolute JER reduction if UWB-ATCC is used. Furthermore, increasing
the training data to 10k samples improved the performance, resulting in JER scores near
to 20% (LDC+UWB). A more appropriate comparison of text and acoustic-based SD for
ATC communications can be found in our previous work [8]. Additionally, in the right
panel of Figure 11, we present a box plot that shows the variation of the BERT-based SD
model’s performance when fine-tuned with different training seeds. Each box represents
the variation of the model between the two proposed classes: ATCo and pilot, over the
fivefold cross-validation scheme. The results are listed with F1-scores. Overall, we can
conclude that the UWB-ATCC dataset is more informative for the SD model in comparison
to the LDC-ATCC dataset.
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Figure 12. Metrics for the text-based diarization system (introduced in [7,8]). Metrics are reported
only on ATCO2-test-set-4h corpus with a bert-base-uncased model trained with different datasets
from Table 1. Left plot: ablation of the Jaccard error rate versus the number of samples used to train
the system. Right plot: F1-score for models trained with different training seeds. The box plot depicts
the performance variability when splitting the test set by ATCo and pilot subsets.

5.4. Future Work Enabled by ATCO2

In this subsection, we discuss several research directions that can be explored with the
ATCO2 corpora. We cover (i) end of communication detection (akin to VAD), (ii) read-back
error detection, and (iii) English language detection.
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5.4.1. End of Communication Detection

In the ATC domain, it is crucial to detect the end of communications. While push-to-
talk (PTT) signals are commonly acquirable in the ATC operations room or in the cockpit,
there are cases where PTT is not available, and in such scenarios, the ATCO2 corpora can
be leveraged to develop end-of-communication detection systems using either acoustic- or
text-based approaches. Acoustic-based systems, known as VAD, perform their task prior to
the ATC communication being sent to the ASR system [89], but may require the integration
of a new independent module into the recognition pipeline. Text-based systems rely on
strong artificial intelligence models like BERT, and previous studies in ATC [8] have shown
their effectiveness in detecting callsigns [90], commands [7], and end-of-communication
signals from transcripts generated by an ASR system.

5.4.2. Read-Back Error Detection

Pilot read-backs happens when a pilot speaks back the relevant instructions initially
uttered by the ATCo. In practice, the ATCo is listening and checking the conformity of each
read-back. Therefore, it is important to have a procedure in place, e.g., a read-back error
detection (RBED) system. Despite the infrequency of communication errors in ATC, they
still have the potential to cause significant safety issues, with some transmissions containing
multiple errors. Authors in [91] show that in every hundredth ATC communication, an
error may occur, and in [92], the authors show that the error may occur in every sixteenth
communication. The possibility to detect such error still remains a challenge, as shown
in this recent work [93]. Although, in general, read-back errors are quite rare, preventing
even one incident due to automatic RBED can make an important difference in ensuring
ATM safety. To support ATCos in this task, previous projects employ ASRU engines to
extract high-level information from ATC communications [5]. Previous work in [93] has
proposed two approaches for performing RBED. One system is based on rules, while
a second system is a data-driven sequence classifier based on a BERT-alike pretrained
encoder, named RoBERTa [71]. Here, the input sequence is a concatenation of ATCo and
pilot utterance transcriptions with a special separator token [SEP] between them. They
show that combining these approaches results in an 81% RBED rate in real-life voice
recordings from Isavia’s en-route airspace. They also cover a proof-of-concept trial with six
ATCos producing challenging, artificial read-back error samples.

A main issue with well-known past projects, such as HAAWAII or MALORCA, is that
their data cannot be publicly shared. In contrast, ATCO2 corpora are open to the public,
e.g., ATCO2-test-set-1h set can be accessed for free, and practitioners can follow previous
research to implement an RBED module.

5.4.3. English Language Detection

Currently, we have developed and deployed a suitable English language detection
system (ELD) to discard non-English utterances in newly collected data. We tested a
state-of-the-art acoustic-based system with an x-vector extractor. We also came up with
the idea of using an NLP approach that processes ASR output with word confidence for
the ELD. Finally, our experiments show that the ELD based on NLP is superior to the
acoustic approach in both detection accuracy and computational resources. Moreover, the
NLP approach can use outputs from several ASR systems jointly, which further improves
the results. For the processing pipeline, we integrated the NLP-based English detector
operating on Czech and English ASR. The integrated English detector consists of TF–IDF
(term frequency–inverse document frequency) for reweighting the accumulated “soft” word
counts and a logistic regression classifier to obtain the English/non-English decision [24].

We created the development and evaluation dataset consisting of data from various
airports, data with various English accents, and code-mixing of English and local languages.
The data are selected from our ATCO2 corpora introduced in Table 1. The development
set is used to estimate the model parameters of our English language detector (the logistic
regression classifier). The evaluation set is used for testing. The rules for manually tran-
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scribing the utterances are mentioned below. We found several interesting properties of the
ATC data during listening and tagging the ELD dataset:

• Various noise conditions. The majority of data are clean, but there are some very noisy
segments;

• Strongly accented English. The speakers’ English accent varies widely. From native
speakers (pilots) to international accents (French, German, Russian, etc.) (pilots and
ATCos) and strong Czech accents (pilots and ATCos);

• Mixed words and phrases. For example, the vocabulary of Czech ATCos is a mix
of Czech and English words. They use standard greetings in Czech which can be
a significant portion of an “English” sentence if a command is short. On the other
hand, they use many English words (alphabet, some commands) in “Czech” sentences.
Moreover, they use a significant set of “Czenglish” words.

We use the language of spoken numerals as a rule of thumb to decide on the language
of a particular ATCo-pilot communication utterance. The language has to be consistent
within the audio recording. More detailed information, including experimental results, is
covered in our previous work [24].

6. Conclusions

This paper expands upon our previous work [7] and discusses the main lessons
learned from the ATCO2 project. The aim of the ATCO2 project was to develop a platform
for collecting, preprocessing, and posterior ASR-based transcription generation of ATC
communications audio data. With over 5000 h of ASR transcribed audio data, ATCO2 is
the largest public ATC dataset to date, thus pushing the research boundaries on robust
automatic speech recognition and natural language understanding of ATC communications.
The main lessons learned from ATCO2 are sixfold, as follows:

• Lesson 1: ATCO2’s automatic transcript engine (see Appendix B) and annotation
platform (see Appendix C) have proven to be reliable (∼20% WER on ATCO2-test-set-
4h) for collection of a large-scale audio dataset targeted to ATC communications;

• Lesson 2: Good transcription practices for ATC communications have been developed
based on ontologies published by previous projects [5]. A cheat sheet (see Appendix E)
has been created to provide guidance for future ATC projects and reduce confusion
while generating transcripts;

• Lesson 3: The most demanding modules of the ATCO2 collection platform are the
speaker diarization and automatic speech recognition engines, each accounting for
∼32% of the overall system processing time. The complete statistics regarding runtime
are covered in the Table 3. In ATCO2, we make these numbers public so they can be
used as baselines in future work aligned to reducing the overall memory and runtime
footprint of large-scale collection of ATC audio and radar data;

• Lesson 4: Training ASR systems purely on ATCO2 datasets (e.g., ATCO2-T 500h set
corpus) can achieve competitive WERs on ATCO2 test sets (see Table 4). The ASR
model can achieve up to 17.9%/24.9% WERs on ATCO2-test-set-1h/ATCO2-test-set-
4h, respectively. More importantly, these test sets contain noisy accented speech,
which is highly challenging in standard ASR systems;

• Lesson 5: ATC surveillance data are an optimal source of real-time information to
improve ASR outputs. The integration of air surveillance data can lead to up to 11.8%
absolute callsign WERs reduction, which represents an amelioration of 20% (62.6% no
boosting→ 82.9% GT boosted) absolute callsign accuracy in ATCO2-test-set-4h, as
shown in Table 5;

• Lesson 6: ATCO2 corpora can be used for natural language understanding of ATC
communications. BERT-based NER and speaker role detection modules have been
developed based on ATCO2-test-set-4h. These systems can detect callsigns, commands,
and values from the textual inputs. Additionally, speaker roles can also be detected
based on textual inputs. For instance, as few as 100 samples are necessary to achieve
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60% F1-score on speaker role detection. Furthermore, the NLU task is of special
interest to the ATC community because this high-level information can be used to
assist ATCos in their daily tasks, thus reducing their overall workload.

In addition to these six lessons learned, this paper brings substantial improvements
in the domain of automatic speech recognition and understanding for ATC domain, i.e.,
Tables 5 and 6 show the current best-performing ASR and NLU engines developed on
open-source data, and, thus, are replicable by the community. Furthermore, to the authors’
knowledge, there is no other research or commercial activity at this moment which would
demonstrate a more accurate engine for an ATC domain built on publicly open data.
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Nomenclature

AI Artificial Intelligence
AM Acoustic Model
ATC Air Traffic Control
ATM Air Traffic Management
ASR Automatic Speech Recognition
ATCo Air Traffic Controller
ATCC Air Traffic Control Corpus
ADS-B Automatic Dependent Surveillance–Broadcast
CTC Connectionist Temporal Classification
Conformer Convolution-augmented Transformer
dB Decibel
DNN Deep Neural Networks
E2E End-To-End
ELDA European Language Resources Association
FST Finite State Transducer
ICAO International Civil Aviation Organization
GELU Gaussian Error Linear Units
LF-MMI Lattice-Free Maximum Mutual Information
LM Language Model
ML Machine Learning
NER Named Entity Recognition
NLP Natural Language Processing
NLU Natural Language Understanding
PTT Push-To-Talk
SNR Signal-To-Noise
VAD Voice Activity Detection
VHF Very-High Frequency
WER Word Error Rate
WFST Weighted Finite State Transducer
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RBE Read-back Error
RBED Read-back Error Detection

Appendix A. ATCO2 Project

The ATCO2 project developed an unique platform that allows the collection, organiza-
tion, and preprocessing of air traffic control (voice communication) data from airspace. The
project considers real-time voice communication between air traffic controllers and pilots
available either directly through publicly accessible radio frequency channels, or indirectly
from air-navigation service providers (ANSPs). In addition to the voice communication, the
contextual information available in a form of metadata (i.e., surveillance data) is exploited.

More specifically, data acquisition was based on off-the-shelf automatic-dependent
surveillance-broadcast (ADS-B) technology already exploited by OpenSky Network (OSN),
collecting detailed (live) aircraft information over the publicly accessible 1090 MHz radio
frequency channel. ADS-B sensors are distributed among volunteers (i.e., community of
users) throughout the world (at https://opensky-network.org/network/facts; accessed
on 10 October 2023), making it possible to analyze billions of ADS-B messages. The aim
of ATCO2 was to extend the current cloud setting (i.e., central server responsible for
managing the sensors, collecting the received ADS-B messages, and storing all received
information in a database) so that ATC voice communication of both channels (ATCo and
pilot’s read back) will be captured, time correlated with the surveillance data, and stored in
the database for further processing. These data will also be complemented by air traffic
voice communication data provided by ANSPs. Below are listed some links that might be
of interest to the reader.

• The latest news and blog posts from ATCO2 project are located in the following
website: https://www.atco2.org/; accessed on 10 October 2023.

• The ATCO2 corpus can be downloaded for a fee at https://catalog.elra.info/en-us/
repository/browse/ELRA-S0484/; accessed on 10 October 2023.

• The ATCO2-test-set-1h can be downloaded for free at https://www.atco2.org/data;
accessed on 10 October 2023.

• Stats and voice feeding of ATC data is listed at https://ui.atc.opensky-network.org/
set-up; accessed on 10 October 2023.

• ATC training and transcription service is provided by SpokenData at: https://www.
spokendata.com/atco2; accessed on 10 October 2023.

Appendix B. Automatic Transcription Engine

This appendix describes in detail how we collected the audio and metadata that
brought to life the ATCO2 corpus. We mainly rely on the automatic transcription engine,
described in more detail in Section 3.2. The automatic transcription engine is implemented
as a scalable cloud service. It communicates with other services (or partners) using APIs.
This service is designed to process large flows of data produced by data feeders. Data
feeders are enthusiasts that act as “feeders” of ATC speech and contextual ATC data (e.g.,
surveillance), see Section 4.2.

The data are pushed to this service by OSN (OpenSky Network: https://opensky-
network.org/; accessed on 10 October 2023) servers by calling an API request and providing
a job setting JSON file. After the request is accepted, settings parameters are processed and
the job is stored in an internal queue for processing. The user (in this case, OSN) may have
an ability to tweak the settings and to affect the processing pipeline and the result, namely:

• Audio input format choices;
• Rejection threshold for too-long audio;
• Rejection threshold for too-short audio;
• Rejection threshold for too-noisy audio;
• Rejection threshold for non-English audios;
• Switching the language of automatic speech recognizer.
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Most of these are actually disabled due to security reasons (not to interrupt the processing
pipeline), but may be easily enabled on the fly if needed. The overall data flow model is
described in Figure A1. Any new job (request for a full automatic transcription of recording)
accepted via API on the SpokenData (Industrial partner: https://www.spokendata.com/atco2;
accessed on 10 October 2023) side is processed by a master processing node. The job is
enqueued into a workload manager queue. Once there is a free processing slot, the job is
submitted to a processing server, or worker. The master processing node then informs the
OSN server about the state of the job by calling a callback.
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Figure A1. ATCO2 communication schema.

Appendix C. Transcription Platform: Data Flow

The data (the recording for human transcription) life cycle is split into four main states:
The new recording state is set as queued and is untouched when the recording is

pushed into the transcription platform from the transcription engine. The recording is
placed into a queue of transcription jobs and is immediately visible to all annotators. The
queue is shown in the open jobs screen. Annotators can interact with the queue—listen to
recordings and select some for transcription. Recording in this state may drop off the queue
in the case: they are old—no one is interested in annotating them; three annotators marked
the recording by thumbs down. The dropped-off recordings are deleted after 7 days.
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Once an user selects the recording for transcription, revises the automatic transcription,
and saves it, the recording is set as queued and annotated. This state prevents the recording
from being dropped from the queue and deleted. Also, it is indicated as (to) re-check in
the open jobs screen, to inform other annotators that it was modified (annotated) and they
should recheck if the transcription is correct rather than annotate from scratch. If any
annotator indicates the existence of personal information in the recording (by “Anonymize”
label), the recording is dropped off the queue and deleted.

The next state is annotated. If the recording is successfully rechecked, then the
recording is considered as annotated and the transcription is final. The recording is removed
from the open jobs queue and placed on a stack of finished recording transcriptions.
The stack is periodically exported to ELRA for further packaging and distribution to the
community. This state also triggers a callback to the OSN platform, informing them that
the human transcription is completed, and they can download the transcription. After the
recording is exported to ELRA, we set the state as Finished. Here, the recording can be
archived or deleted. The detailed data flow schema is depicted in Figure A2.
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Figure A2. Diagram of the data flow (lifetime) in the transcription platform. Transcription engine in
green. Queued and untouched state in yellow. Queued and annotated state in red. Annotated state
in blue. The rest (white) is for state, securely destroyed.

239



Aerospace 2023, 10, 898

Appendix D. Communication Schema

The communication schema developed during ATCO2 project is depicted in Figure A3.
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Figure A3. Other view of the ATCO2 communication schema.

Appendix E. Transcription Cheat Sheet

Figure A4 presents the transcription cheat sheet developed by ATCO2 project.
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Segmentation and speaker "identity"

audio segment = speaker utterance
segment boundaries are in pauses (check the timing)
delete segments without speech

Transcription

Alphabet

Alfa
Bravo
Charlie
Delta
Echo
Foxtrot
Golf
Hotel
India
Juliett
Kilo
Lima
Mike
November
Oscar
Papa
Quebec
Romeo
Sierra
Tango
Uniform
Victor
Whiskey
X-ray
Yankee
Zulu

One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Zero

everything is in lower case except Call-signs (Speedbird Charlie Nine Two), Airlines, Waypoints, Geographical Names

numbers are written as pronounced (one hundred / one zero zero), do not use numerals 10.3

only ASCII code letters are allowed A-Z a-z [ ] / ' - ( ) 

if abbreviations are spelled then capitalized QNH (as quenage) lowercase otherwise atis (as atis)

transcribe exactly what was said including re- re- restarts and and repetitions
indicate swallowed or cutted words if possible Lufthansa(-hansa) goodbye(goodb-)

whatever is not intelligible mark as unknown [unk] either word(s) or whole sentences
indicate hesitations like eeeh, uuuhhm by [hes]
label or enclose non-English parts of sentence into [NE] [unk] [/NE] if you understand then be specific [NE French] bonjour [/NE]
Any personal data must be labeled or tagged for later removal "morning cpt. [PERS] John Doe [/PERS] please"

Global

each segment has to have attached a speaker tag
be specific in the identity, attach ATCO-Radar, ATCO-Tower, Call-sign
if the identity is not clear distinguish speakers using UNK-1, UNK-2, UNK-3

 Transcription TAG  Example

UNK-1, UNK-2 etc. Unknown identity (callsign) of segment

XT Whole segment is Crosstalk (blocking)

[PERS] Jon Doe [/PERS] Personal data

[unk] Word(s) is not legible/understandable

[hes] Clear hesitation (umm, uhh, hmmm)

[noise] Non-speaker noise (alarm etc)

[spk] Speaker noise (laugh, cough etc)

[key] Double-press PTT

[XT] Small part of the segment is crosstalk

[NE] [unk] [/NE] Non-English language not identified

[NE langID] [/NE] Non-English but language identified e.g. [NE German][/NE]

 Speaker TAG  Example

ATCO, ATCO radar, ATCO tower ATCO side of the conversation

UNK-1, UNK-2 etc. Unknown identity (call-sign) of segment

LH469 Correct call-sign should also appear in the audio

Crosstalk Whole segment is Crosstalk

long passages of cross talks set as segment and tag Crosstalk

Do not waste your time on really bad files or segments. Refuse the job or ignore the segment.

Indicate segments which are correctly transcribed by checking the Correct transcript.

Indicate segments which are not in English checking the Non-English button.

Segment is in English if commands values and numerals are in English. Ignore greetings (but indicate
them by using [NE] [/NE] tag)

When the file is finished mark the job as DONE

 correct  incorrect

takeoff take off, take-off

callsign call sign, call-sign

stand by standby (to not be mixed up with “taxi to your stand bye/by”)

startup start up

readback read back

flight level flightlevel

good bye goodbye

line up lineup

descend descent (= still correct but not preferred), decent

taxiway taxi way

Abbrev.

acas
AFIS
AIP
AMSL
ATC
atis
ATS
ATZ
fato
FIS
POB
PTT
QDM
QDR
QFE
QNH
QTE
RNP
RTF
RVR
SSR
VDF
VHF
VFR
volmet

Use provided information (IFR/VFR manuals, list of waypoints and callsigns, etc).

Annotation manual cheat sheet: v6 10.02.2022

https://atc.spokendata.com

Labeling

Assign words into classes: Call-sign, Command, Value, Unnamed Phrase, Anonymize and optionally non-English.

If you do not understand -> write <UNK>, if you are not sure -> do not label.
We prefer QUALITY not quantity

Indicate segments which are correctly labeled by checking the Correct labeling.

Call-sign consists of: airline identifier / name and alfa-numeric code, or only the alfa-numeric code.
Command Value tuple(s) usually follows the Call-sign

You can indicate personal data using Anonymize label

Prepositions and variations are part of the command: continue to, expect a turn after, contact now, descend for

Call-signs

Stobart One Nine Lima
Ryanair Four Tango Mike
Iceair Four Four Six
Shamrock Twenty Two Zulu
Lufthansa Six Lima
Speedbird Triple One
Delta Bravo Delta Zulu
Heli Alfa One
Tiger Three Zero 

Commands and Values

descend flight level one five
climb to flight level one two zero
maintain flight level one five
continue heading value
left/right heading value
continue present heading value
maintain heading value
heading two one six
turn right
set altitude three thousand feet
direct Paris
vector for ILS six five
cross runway two eight seven
line up runway two eight
vacate zero five right
cleared to cross runway two eight seven
speed two five zero knots
reduce speed two five zero knots
contact apron one two one seven five
contact Zurich Approach
call Swiss two six eight zero
request startup and clearance
report established
expect vectors for ILS approach runway four

You can indicate non-English part of transcript using non-English label

Unnamed Phrase use when it does not fit Call-sign, Command, Value category, but it is obvious it carries an information.

Unnamed Phrase

Informations: wind speed, dew point, surface wind, QNH, visibility
Places that are not part of a value: Paris, London
Greetings: hello, goodbye, good morning
ATC IDs: Tower, London Arrival, Munich Approach, Swiss Radar

Figure A4. Cheat sheet for ATC communications annotation. This document was created during
the transcription process of ATCO2 corpora, which can be used to transcribe air traffic control
communications data from different airports.
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Abstract: Most conventional speech recognition systems have mainly concentrated on voice-driven
control of personal user devices such as smartphones. Therefore, a speech recognition system
used in a special environment needs to be developed in consideration of the environment. In
this study, a speech recognition framework for voice-driven control of unmanned aerial vehicles
(UAVs) is proposed in a collaborative environment between manned aerial vehicles (MAVs) and
UAVs, where multiple MAVs and UAVs fly together, and pilots on board MAVs control multiple
UAVs with their voices. Standard speech recognition systems consist of several modules, including
front-end, recognition, and post-processing. Among them, this study focuses on recognition and
post-processing modules in terms of in-vehicle speech recognition. In order to stably control UAVs
via voice, it is necessary to handle the environmental conditions of the UAVs carefully. First, we
define control commands that the MAV pilot delivers to UAVs and construct training data. Next, for
the recognition module, we investigate an acoustic model suitable for the characteristics of the UAV
control commands and the UAV system with hardware resource constraints. Finally, two approaches
are proposed for post-processing: grammar network-based syntax analysis and transaction-based
semantic analysis. For evaluation, we developed a speech recognition system in a collaborative
simulation environment between a MAV and an UAV and successfully verified the validity of each
module. As a result of recognition experiments of connected words consisting of two to five words,
the recognition rates of hidden Markov model (HMM) and deep neural network (DNN)-based
acoustic models were 98.2% and 98.4%, respectively. However, in terms of computational amount,
the HMM model was about 100 times more efficient than DNN. In addition, the relative improvement
in error rate with the proposed post-processing was about 65%.

Keywords: speech recognition; voice-driven control; acoustic model; grammar network; syntax
analysis; semantic analysis; unmanned aerial vehicle (UAV); UAV control

1. Introduction

Since speech recognition technology has been successfully used in personal assistant
devices such as artificial intelligence (AI) speakers and smartphones, various speech recog-
nition applications have been introduced. In particular, many attempts have been made to
apply voice control to moving objects such as cars, and the speech recognition function has
played a very important role in controlling flying objects such as unmanned aerial vehicles
(UAVs). In order to control a moving object through speech recognition in such a special
environment, research considering the specificity of the environment is necessary. This
study proposes a speech recognition framework for voice-based UAV control in a collab-
orative environment of manned aerial vehicles (MAVs) and UAVs. In this environment,
multiple MAVs and multiple UAVs fly together, and pilots on board the MAVs perform
collaborative tasks with UAVs by controlling multiple UAVs with their voices.
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Several previous studies introduced systems for controlling UAVs via voice [1–3]. Most
conventional studies have focused on a typical speech recognition environment where
speech recognition controls a single UAV. In a previous study, we presented an efficient
speech recognition architecture and front end for controlling multiple UAVs with voice [4].

If the current speech recognition scheme (that is, server-centric scheme) that processes
speech recognition in a remote server is applied to a collaborative environment of a MAV
and an UAV, various problems may arise. First, multiple MAV pilots simultaneously
submitting voice commands to a single server can place a heavy burden on the server,
delaying the sending of commands. The server-centric scheme also manages indirect UAV
control by performing three data transmission sequences: the MAV to the recognition server,
the server to the MAV, and the MAV to the UAV. This indirect communication can incur
communication costs, resulting in misrecognition or dropped commands due to packet loss
while the MAV and the UAV are moving. For high-speed moving, special-purpose UAVs
(e.g., military UAVs), the packet loss problem can be more serious.

In [4], we proposed an efficient recognition scheme to solve such disadvantages of
conventional speech recognition schemes in the multi-UAV control via voice. The proposed
scheme is summarized as distributed speech recognition in which the MAV and UAV share
speech recognition processes. The MAV system processes the front-end module to extract
acoustic features from the input speech uttered by the MAV pilot. When the acoustic
features are sent to the UAVs, the UAV’s system performs the recognition process that
follows the front-end process.

This study introduces a speech recognition process not covered in the previous study.
There are few studies considering an efficient speech recognition framework for the envi-
ronment where a MAV and an UAV cooperate to perform military operations. This study
proposes a speech recognition framework suitable for this environment. In particular, we
concentrate on an acoustic model suitable for a distributed speech recognition system in
which the MAV and UAV share speech recognition tasks and a post-processing method to
minimize the risk caused by speech recognition errors in a collaborative environment of a
MAV and an UAV.

In recent years, research on speech recognition and understanding in air traffic control
(ATC) environments have been conducted through projects such as HAAWAII [5] and
SESAR [6]. In a voice communication environment between air traffic controllers (ATCo)
and the pilot, the ATCo receives the pilot’s voice command and performs recognition. ATC
systems with relatively high-performance hardware can handle complex models such as
end-to-end ASR models [7–9]. However, in the collaborative environment between an
UAV and a MAV targeted in this study, the speech recognition module is operated on the
UAV with hardware resource constraints. Thus, the conventional research has somewhat
different characteristics from the environment we are targeting in that the ATC system has
relatively few hardware resource limitations and is processed at the ground control center.

The remainder of this paper is organized as follows. In Section 2, we propose an
efficient speech recognition framework for voice-driven UAV control in a collaborative
environment of MAVs and UAVs. In Section 3, several experiments conducted on speech
data and their results are reported and discussed. Finally, Section 4 concludes the paper.

2. In-Vehicle Speech Recognition for Voice-Driven UAV Control in a Collaborative
Environment of MAV and UAV

Although considerable research on speech recognition has been conducted in various
fields, research on speech recognition for UAV control is relatively insufficient [10]. Several
studies on multimodality using speech and visual data have been introduced [10,11],
and most of the speech recognition studies have considered situations where speech
recognition is performed at a ground control station [12–14]. However, most speech
recognition processes for UAV control are performed in a similar way to general speech
recognition systems.
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A traditional speech recognition system consists of several modules, including front-
end, recognition, and post-processing modules, as shown in Figure 1 [15,16]. The front-end
module performs several processes, such as noise reduction, voice triggering, and acoustic
feature extraction. Next, in the recognition module, speech recognition is performed
using pre-trained acoustic models using common pattern recognition techniques such
as deep neural networks (DNNs) or hidden Markov models (HMMs). Finally, the post-
processing module performs syntax and semantic analyses to improve the recognition
output’s accuracy and clarity.
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As mentioned in Section 1, a speech recognition scheme suitable for the collaborative
environment of MAVs and UAVs is a form of distributed speech recognition in which a
MAV and an UAV share speech recognition processes. Figure 2 summarizes this scheme
in which the MAV processes the front-end module and the UAV performs the recognition
process.
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In this section, we propose each module suitable for collaborative environments of
MAVs and UAVs.

2.1. Front-End of Speech Recognition

The front end of speech recognition consists of four main processes: voice activ-
ity detection (VAD), feature extraction, noise reduction, and voice trigger, as shown in
Figure 3 [4,17]. The first two processes are essential for speech recognition. VAD is the
process of detecting target speech regions to perform speech recognition. Feature extraction
is to extract features representing acoustic characteristics in the time or frequency domain
from input speech data.
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Noise reduction and voice triggering should be developed according to the system
environment. In the previous study, noise reduction and voice-triggering approaches were
proposed to handle multi-UAV environments [4]. In particular, to consider multi-UAV
control, we proposed a multi-channel voice-trigger approach in which each UAV has a
unique name used as a trigger word, and the MAV pilot establishes a connection between
the MAV and the target UAV among multiple UAVs. Figure 4 represents the multi-channel
voice trigger-based front end and speech recognition procedures for multi-UAV control.
When MAV pilots have a conversation and a situation arises where they need to call an
UAV among multiple UAVs, they call the name corresponding to the target UAV. Then, the
voice-trigger module detects a specific UAV name according to the process shown in the
upper block of the figure, and it attempts to connect with the target UAV. When connected
to the target UAV, the pilot speaks a command, and the features extracted from the voice
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are transmitted to the target UAV, and finally, speech recognition proceeds, as shown in the
block below in Figure 4.
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2.2. Model Construction for Speech Recognition

As described in Figure 4, after the pilot calls the trigger word for the target UAV and
a connection is made with the UAV, the pilot delivers a command to the UAV, and the
UAV starts speech recognition for this command. This subsection describes the speech
recognition process performed in the UAV system.

2.2.1. Definition of Voice Commands for Training Data Collection

For speech recognition, an acoustic model must be constructed in advance (this is
called model training), and training data is required in this process. Therefore, for collecting
training data, we first define a set of voice commands that the pilot of the MAV delivers
to control the UAV. For this work, we conducted expert consultation through several
meetings with military aviation officials. The characteristics of commands used for military
operations between MAV pilots and UAVs are shown in Table 1.

Table 1. Characteristics of commands used for military operations between MAV pilots and UAVs.

Restrictions Expert Advice

Structure of commands Simple and clear commands for precise delivery
(1 to 5 connected words)

Vocabulary size 150 to 200 words available to pilots

Language English is used for communication between military aircraft
(International Telecommunications Standard)

In other words, for the voice commands for military operations between MAVs and
UAVs, a command structure consisting of 1 to 5 connected words out of approximately
150 to 200 words available to MAV pilots is suitable for accurately delivering commands to
the UAV.

The voice command sets must be designed considering various missions the UAV must
perform and various collaboration situations between MAV and UAV. In addition, the com-
mand sets should be composed of frequently used words for the pilot’s convenience and
consist of words that are easy for speech recognition. There have been several international
cooperation projects related to the collaborative operation of MAVs and UAVs, and various
related reports and standards have been published, including the Standardization Agree-
ment (STANAG)-4586, Manned–Unmanned Teaming (MUM-T), and Manned–Unmanned
Systems Integration Capability (MUSIC) [18,19]. By analyzing the documents, we investi-
gated the collaboration situations and missions between MAVs and UAVs and specified
the division of roles between MAVs and UAVs according to cooperative operation.
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In some documents, the core missions of UAVs in the cooperative operation of a MAV
and an UAV are known as missions related to reconnaissance, attack, condition monitoring,
and location/route management [20,21]. In addition, STANAG-4856, a military standard
established by the North Atlantic Treaty Organization (NATO), defines data link interface
(DLI) messages between a ground control center and an UAV [18]. Therefore, we derive
the voice command sets by linking the UAV core missions with the DLI messages provided
by STANAG-4856. Table 2 summarizes the mission command sets configured for several
DLI messages.

Table 2. Examples of mission command sets.

DLI Message Mission Commands

Vehicle Configuration
Check energy storage unit, read back, report energy state, report fuel

state, report battery state, ready for launch, acknowledge, are you
ready, take off

Vehicle Operating Mode Set up control mode, request manual control, request automatic
control, report control mode

Vehicle Steering

Set up heading point, heading for waypoint (no.), change heading
point, report heading point, say heading point, set up altitude,

request altitude (no.), maintain altitude, change altitude (no.), say
altitude, report altitude, set up speed, reduce speed to (no.), set up

loiter position, request loiter position latitude (no.)

Mission Transfer Set up mission plan, clear route, change route (no.), request route
(no.), clear mission, request mission (no.)

AV Loiter Waypoint

Set up loiter type, request loiter type circle, request loiter type
racetrack, request loiter radius (no.), report loiter type, report loiter
altitude, report loiter speed, request loiter speed (no.), request loiter

duration (no.), report loiter duration, request loiter bearing north

Table 3 introduces several scenarios where the UAV executes its mission by passing
commands from the MAV pilot to the UAV using the defined command sets. In other
words, the phrases in the command scenarios are all examples of commands delivered
by the MAV pilot to the UAV, and commands are delivered sequentially according to the
phrases in the scenario presented for each mission. It shows that three UAVs (each UAV
is named Alpha, Bravo, and Charlie) perform surveillance and reconnaissance under the
control of a manned pilot. In a situation where three UAVs are launched simultaneously
after the pilot determines basic settings such as route and altitude, Alpha is put into a
reconnaissance mission, and Bravo and Charlie are put into surveillance missions. Each
mission command starts with calling the UAV to be controlled.

Table 3. Examples of several mission types and command scenarios.

Mission Type Command Scenario Mission Type Command Scenario

Take-off

Agent Alpha
Agent Bravo
Agent Charlie
Set up heading point
Heading for waypoint 7
Set up altitude
Request altitude 7000
Set up speed
Request speed 250
Ready for launch
Are you ready
Take off
Disconnection

Reconnaissance
flight
instructions

Agent Alpha
Request approach
Set up altitude
Request altitude 3000
Set up area
Request vertices number 1
Request area min
altitude 2000
Request area max
altitude 3000
Request area loop count 10
Disconnection
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Table 3. Cont.

Mission Type Command Scenario Mission Type Command Scenario

Surveillance
flight

instructions

Agent Bravo
Request activity
surveillance
Request loiter type circle
Request loiter radius 200
Request loiter speed 10
Disconnection
Agent Charlie
Request activity
surveillance
Request loiter type
figure eight
Request loiter speed 20
Disconnection

Return after
completing the
mission

Agent Alpha
Agent Bravo
Agent Charlie
Clear mission
Request flight
Change heading point
Heading for waypoint 0
Start flight termination
Set up control mode
Request automatic control
Report arrival time
Disconnection

2.2.2. Acoustic Model Construction

An acoustic model is a fundamental component of speech recognition [22]. Acoustic
model construction is a process of learning to map acoustic features extracted from input
speech signals to phonetic units [23,24]. Typical acoustic models are HMM and DNN.
HMM is constructed by learning the statistical relationships between the acoustic features
and the corresponding phonetic units [25,26]. On the other hand, the DNN-based acoustic
model is trained using deep learning techniques to learn a non-linear mapping between
the acoustic features and the phonetic units [27].

The HMM is a traditional acoustic model that has been successfully used in many
speech recognition systems [24]. It has a simple and interpretable structure and is, therefore,
computationally efficient, especially during decoding. However, the HMM has limited
ability to model complex non-linear relationships between input features and output
phonemes, making it difficult to capture acoustic details [28]. Because of this, the HMM
has limitations in recognizing speech with complex structures (e.g., sentence units).

On the other hand, the DNN is capable of modeling complex non-linear relationships
between input features and output phonemes, making it possible to capture acoustic details
and improve recognition accuracy for sentence-level speech [29,30]. However, it has a more
complex structure than HMM, making it more computationally intensive during training
and decoding, and it may require specialized hardware to achieve real-time performance. In
particular, the DNN requires significant training data to learn many model parameters [31].

Since the HMM and DNN have such conflicting characteristics, selecting and construct-
ing a model suitable for recognizing the mission command sets delivered to the UAV by the
MAV pilot and suitable for the system environment driving speech recognition is necessary.
As described in the previous section, the pilot’s mission commands given to the UAV are
relatively short sentences consisting of at most five words. The sentence is considered a
series of connected words. The total number of words included in the command sets is
only about 400. In terms of the system environment driving speech recognition, UAVs
responsible for speech recognition processing typically have limited computing hardware
capacity and can perform limited computations.

Based on these characteristics, a speech recognition system that can recognize con-
nected words consisting of a relatively small number of words with medium hardware
capacity is appropriate for recognizing UAV mission commands. Therefore, HMM is
expected to solve these limitations more effectively than DNN.

For HMM-based connected word recognition, the HMM must be constructed for each
word included in the command set. Since the recorded training data are composed of
commands in sentence units, it is necessary to segment each speech data sequence into
individual words. For each word, a separate HMM is then trained using the segmented
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speech data. That is, the same number of HMMs as the number of words included in the
command set is constructed during training.

After building an HMM for each word, connected word recognition proceeds as
follows. First, by detecting the silence regions included in the input speech, the connected
word command is divided into sequences of isolated words. Acoustic features are then
extracted from each isolated word. Next, as shown in Figure 5, the same decoding process
as isolated word recognition is performed using the Viterbi algorithm [32], which computes
the likelihood for each HMM (λ1, . . . , λV) with given acoustic features. Once an HMM
representing the maximum likelihood is determined, the word corresponding to the model
is regarded as the recognition result.
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Figure 5. The procedure of HMM-based isolated word recognition.

In the speech recognition process shown in Figure 5, the HMM with the same structure
can be used for all words. However, since the amount of information that the model
needs to learn varies depending on the length of the word utterance, more effective speech
recognition can be performed by modifying the structure of the HMM considering the
word length.

As illustrated in Figure 6, if all words have the same HMM structure, inefficient
HMMs may be constructed in which one state covers multiple phonemes or several states
simultaneously handle one phoneme. In this study, we construct HMMs with different
structures for each word to improve the structural problem of HMM. Since we expect that
the HMM structure in which one state handles one phoneme is the most effective, we adjust
the number of HMM states according to the number of phonemes in each word, as shown
in Figure 7.
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2.3. Post-Processing with Syntax Analysis and Semantic Analysis

The purpose of post-processing is to improve the accuracy of recognition output
through syntax analysis and semantic analysis. In this study, we propose efficient meth-
ods for each post-processing task, considering the mission commands established in the
collaborative environment of MAVs and UAVs.

2.3.1. Syntax Analysis Based on the Grammar Network

Syntax analysis is the process of analyzing the grammatical structure of a spoken
sentence to determine its meaning [33]. It helps clarify sentences with multiple possible
meanings. Therefore, this processing is very important in the collaborative environment of
MAVs and UAVs where there is a high possibility of misrecognition due to aircraft noise,
and the UAV must clarify the pilot’s mission commands.

In this study, we organized the grammar structure of mission commands into a tree-
type grammar network and performed syntax analysis using this network. That is, the
recognition result conforming to this network was determined to have an appropriate
grammatical structure; otherwise, it was regarded as misrecognition.

The grammar network has one root node and one terminal node, and the network is
formed between the root and the terminal node, with the preceding word becoming the
parent node and the succeeding word becoming the child node according to the grammar
structure of each command. The starting word of each command becomes the child node
of the root node, and the command’s last word becomes the terminal node’s parent node.
When creating a grammar network in this way, several sample commands such as “report
loiter altitude”, “report loiter duration”, and “report battery capacity” can be expressed as
a tree, as shown in Figure 8.

Aerospace 2023, 10, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 8. A grammar network created using several sample commands. 

In Figure 8, “battery capacity” is handled in two ways: storing two words together in 
one node or dividing each word into two nodes. The reason for this processing is to rec-
ognize it as one word when uttering this command without a pause between two con-
nected words. In addition, some mission commands contain numbers, such as “heading 
for waypoint 5”. Since numbers have various lengths, they are expressed as one node 
when processing the syntax of such commands. 

The principle that the grammar network we built can be used to determine whether 
the recognition result conforms to the command syntax is as follows. When a sequence of 
words included in the recognition result has a path starting from the root node and arriv-
ing at a terminal node, the word sequence is determined to conform to the command syn-
tax. If the sequence of words starts from the root node and does not reach the terminal 
node, the word sequence may not conform to the command syntax.  

If it is determined that the word sequence of the recognition result does not conform 
to the command syntax, the result may be regarded as completely incorrect. Nevertheless, 
there is a possibility that only one or two words in the word sequence might be incorrectly 
recognized. Therefore, rather than concluding that the recognition result is completely 
misrecognized, correcting the misrecognized words may help improve overall perfor-
mance. In this study, we propose a method to correct such misrecognition of several words 
by combining candidate recognition results with a grammar network. 

In general, when word recognition is performed on connected words of an input 
command, the similarity between given acoustic features and each word model is calcu-
lated. Then, the top several word models selected in order of similarity become candidate 
recognition results for the given features. At this time, the similarity of each candidateʹs 
result is also stored. 

Figure 9 shows an example of candidate recognition results for the input command 
“report loiter altitude”. If only the first-rank result of each word is accepted, “report route 
altitude” becomes the recognition result, which cannot pass through our grammar net-
work. However, as shown in this figure, if the second-rank result of each word is also 
accepted, “report loiter altitude” can be obtained as a recognition result. In other words, 
after candidate results for each word are selected, among all possible word sequence com-
binations constructed from the candidates, a word sequence having the highest similarity 
while passing through the grammar network becomes the final recognition result of the 
input command. The grammar network is used in this process to verify whether each 
word sequence constructed from the candidates matches well with the command syntax. 

As the number of candidate results for each word increases, the amount of computa-
tion also increases, so we set the number of candidate results to three, which is considered 
the most appropriate. If none of all possible word sequence combinations constructed 
from the candidate results pass through the grammar network, the given input com-
mandʹs recognition result is considered entirely incorrect.  

Figure 8. A grammar network created using several sample commands.

In Figure 8, “battery capacity” is handled in two ways: storing two words together
in one node or dividing each word into two nodes. The reason for this processing is
to recognize it as one word when uttering this command without a pause between two
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connected words. In addition, some mission commands contain numbers, such as “heading
for waypoint 5”. Since numbers have various lengths, they are expressed as one node when
processing the syntax of such commands.

The principle that the grammar network we built can be used to determine whether
the recognition result conforms to the command syntax is as follows. When a sequence of
words included in the recognition result has a path starting from the root node and arriving
at a terminal node, the word sequence is determined to conform to the command syntax. If
the sequence of words starts from the root node and does not reach the terminal node, the
word sequence may not conform to the command syntax.

If it is determined that the word sequence of the recognition result does not conform
to the command syntax, the result may be regarded as completely incorrect. Nevertheless,
there is a possibility that only one or two words in the word sequence might be incorrectly
recognized. Therefore, rather than concluding that the recognition result is completely
misrecognized, correcting the misrecognized words may help improve overall performance.
In this study, we propose a method to correct such misrecognition of several words by
combining candidate recognition results with a grammar network.

In general, when word recognition is performed on connected words of an input
command, the similarity between given acoustic features and each word model is calcu-
lated. Then, the top several word models selected in order of similarity become candidate
recognition results for the given features. At this time, the similarity of each candidate’s
result is also stored.

Figure 9 shows an example of candidate recognition results for the input command
“report loiter altitude”. If only the first-rank result of each word is accepted, “report route
altitude” becomes the recognition result, which cannot pass through our grammar network.
However, as shown in this figure, if the second-rank result of each word is also accepted,
“report loiter altitude” can be obtained as a recognition result. In other words, after candi-
date results for each word are selected, among all possible word sequence combinations
constructed from the candidates, a word sequence having the highest similarity while
passing through the grammar network becomes the final recognition result of the input
command. The grammar network is used in this process to verify whether each word
sequence constructed from the candidates matches well with the command syntax.
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As the number of candidate results for each word increases, the amount of computation
also increases, so we set the number of candidate results to three, which is considered the
most appropriate. If none of all possible word sequence combinations constructed from
the candidate results pass through the grammar network, the given input command’s
recognition result is considered entirely incorrect.

If the first-ranked word sequence does not match the grammar network, it is combined
with the next ranked results and attempts to match the grammar network again. If the
command consists of five words, the total number of combinations will be 243 = 35. There
are rarely situations where all 243 combinations are considered, because usually the first or
second ranked results match the grammar network and the matching process stops.
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2.3.2. Semantic Analysis Based on Transaction Scheme

Semantic analysis is the process of analyzing the meaning of words and phrases
contained in recognition results to extract the intended semantic content [34]. This involves
understanding the context of recognition results. It is an important process in speech
recognition because it allows systems to accurately transcribe speech into its intended
meaning rather than simply recognizing sounds or phonemes. As such, this process is
particularly important in applications such as natural language processing and virtual
assistants, where understanding the meaning of spoken language is essential for providing
accurate and useful responses.

Semantic analysis plays a key role in a system that recognizes mission commands in
the collaborative environment of MAVs and UAVs. During an important military operation,
if a command transmitted by a pilot is recognized as a command that contradicts the current
state of the UAV due to a recognition error or a pilot’s ignition mistake, it can encounter a
very dangerous situation.

For example, in a situation where the UAV receives the command “Request automatic
control”, meaning to switch from manual flight to automatic flight and performs the
mission, if “Ready for launch” to prepare for take-off is recognized as the next command,
the UAV should consider it as a recognition error or a pilot’s ignition mistake and report it
as an unacceptable command. In this study, we utilize semantic analysis to block dangerous
situations caused by recognition errors or pilot ignition mistakes.

The proposed method implements semantic analysis using the transaction scheme
used in data management. A transaction refers to a sequence of operations in data manage-
ment that are treated as a single task unit [35]. It is used to ensure data consistency and
integrity through key properties referred to as ACID, which represent atomicity, consistency,
isolation, and durability.

Atomicity means that a transaction must be treated as a single indivisible operation,
and all operations must succeed or fail as a unit. In other words, if any part of a transaction
fails, the entire transaction is rolled back to its previous state. Consistency is the property
that the data must be in a consistent state before and after a transaction is executed. Isolation
means that the transaction must be executed in isolation from other concurrent transactions.
That is, the results of one transaction should not be visible to other transactions until it
is committed. Finally, durability is the property that once a transaction is committed, its
effect on the data must be permanent. The system can provide reliable and robust data
management by ensuring that transactions are ACID-compliant, especially in mission-
critical applications where data consistency and integrity are essential.

Because of the characteristics of the transaction, transaction-based semantic analysis
of speech recognition results can be effectively used to control UAVs performing critical
missions. The process of transaction-based semantic analysis is as follows.

First, critical command sets are defined, such as safety-critical commands, mission-
critical commands, and flight-critical commands; then, commands corresponding to each
set are selected. Next, each mission is classified as a transaction type, such as a take-off
transaction, landing transaction, or reconnaissance transaction. Furthermore, as shown in
Figure 10, each critical command set is mapped to a mission transaction, allowing more
than one command set to be mapped to a single transaction. Although illustrated here,
the mapping information between the critical command set and the mission transaction is
managed as a kind of mapping table.

Figure 11 shows the process of making a final decision on whether to accept or reject
the command recognition result based on the status of the transaction. We apply the concept
of transaction status, commonly used in data management, to this study. A transaction
has five statuses: active, partially committed, committed, failed, and aborted. When a
transaction starts, it becomes “active”. When the transaction ends, it becomes “partially
committed”, and when it is completely finished, it becomes “committed”. On the other
hand, if the transaction fails to complete in the active status, it goes into the “failed” status
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and eventually changes to the “aborted” status. Sometimes, it is partially committed and
becomes a failed status.
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The proposed method determines whether to accept or reject the command recognition
result based on the transaction status. Assume that a UAV starts a transaction, and a new
command is recognized while this transaction is active. At this time, a transaction that
the new command corresponds to is found in the mapping table. The new command is
accepted if it corresponds to the currently executing transaction; otherwise, it is rejected. As
a result, this verification prevents the start of another new transaction before the currently
executing transaction becomes committed or aborted.

The proposed method guarantees the independence of individual missions the UAV
performs using the transaction scheme. The process for validating recognition results
utilizes the ACID characteristics of the transaction discussed above to ensure that the UAV
can safely carry out its mission.

Figure 12 shows an example of securing the mission’s independence via a UAV by
rejecting a disallowed command through transaction-based semantic analysis. In this
figure, when a MAV pilot delivers the command “Request activity surveillance” related
to the reconnaissance mission to the UAV, the UAV starts the reconnaissance transaction.
While performing the reconnaissance transaction, if the UAV recognizes another voice
message from the pilot as “Ready for launch” that is related to the take-off mission, the
UAV understands that this command is not related to the reconnaissance transaction and
informs the MAV that the command is not allowed.
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3. Evaluation

To validate the efficiency of the proposed speech recognition framework, we conducted
several experiments, including speech recognition, syntax analysis, and semantic analysis.

3.1. Validation of Speech Recognition for Mission Command Set in a Collaborative Environment of
MAVs and UAVs

Speech recognition experiments were performed to verify the performance of the
acoustic models introduced in Section 2.2.2. Training data are required to build acoustic
models. As described in Section 2.2.1, we constructed voice command sets related to
voice-driven UAV control in a collaborative environment of MAV and UAV, and as a result,
obtained about 300 different commands and about 400 different words. We then recorded
50 speakers pronouncing each command and word three times in a clean environment. As
a result, 105,000 pieces of voice data (45,000 data for command units and 60,000 for word
units) were collected. These data were divided into 10 groups, and speech recognition
experiments were conducted using a 10-fold cross-validation method. That is, the data of
5 speakers in the first group were used for testing, and the data of the remaining 45 speakers
were used for model training. In this way, the experiments were conducted 10 times by
changing the test and training data groups, and the average of each experiment result
was calculated.

As explained in Section 2.2.2, we considered the HMM a more efficient model than the
DNN in recognizing mission commands in the form of connected words composed of a
small number of words. Therefore, an HMM model was built for each word, and connected
word recognition experiments were conducted using this model.

In addition, a DNN model was also constructed to compare performance with HMM.
However, there is a limit to building a DNN model with about 100,000 voice data we
collected, so we built a model using the DARPA Resource Management (RM) speech
corpus [36,37]. The DNN used in the experiment is a model with a five-layer structure
built based on Kaldi. Kaldi is an automatic speech recognition (ASR) toolkit with many
ASR algorithms [38]. It has been released in various versions and has provided various
training recipes such as the Wall Street Journal Corpus (wsj), TIMIT (timit), and Resource
Management (rm). Since the speech recognition target covered in this study is commands
composed of several word sequences, we tried to use a DNN model that shows stable
performance while minimizing the amount of computation compared to complex DNN
models. For this reason, we trained a TDNN-based triphone model using the Kaldi S5
version by following the recipe using the RM corpus [39,40]. Speech recognition in the
two models was performed on a laptop with relatively low specifications (Intel i5 (quad-
core, 3.4 GHz), 4 GB RAM) considering the UAV system environment, and the average
recognition time was also investigated along with the recognition rate.

Table 4 shows the results. In this experiment, we investigated the command recogni-
tion results of sentence units, word error rate, and average recognition time of commands.
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In Section 2.2.2, we proposed a method to change the structure of HMM so that each state
of HMM processes one phoneme. To verify this method’s validity, the performance of
the fixed HMM, which consists of a fixed number of states for all words, and the variable
HMM, which has a different number of states for each word, were compared. In order to
examine the results more elaborately, recognition experiments were conducted according
to the length of the command, from a command consisting of two words to a command
consisting of five or more words.

Table 4. Performance of acoustic models (HMM and DNN): recognition rate by sentence (%), word
error rate (%), and average recognition time (sec) in command units.

Model Measure 2 Words 3 Words 4 Words 5 or More

Fixed HMM
Rec. Rate (sent.)
Word Error Rate

100
0

97.4
0.87

95.3
1.49

94.2
2.15

Avg. Rec. Time * 0.03 0.05 0.06 0.09

Variable HMM
(proposed)

Rec. Rate (sent.)
Word Error Rate

100
0

98.5
0.54

97.4
0.86

96.9
1.13

Avg. Rec. Time * 0.03 0.04 0.05 0.10

DNN

Rec. Rate (sent.)
Word Error Rate

100
0

98.8
0.49

97.6
0.80

97.2
1.09

Avg. Rec. Time * 2.0 4.5 6.5 9.0
Avg. Rec. Time ** 0.20 0.38 0.55 0.85

* Experiment with a low-spec laptop/** Experiment with a high-spec laptop.

As shown in this table, the proposed variable HMM improved performance compared
to the fixed HMM. The longer the command length, the more noticeable the performance
improvement. However, there was no significant difference in recognition time between the
two models. Therefore, this result indicates that the variable HMM configures the number
of states differently for each word and is more efficient in recognizing connected words.

Next, we compared the performance of the proposed variable HMM and DNN models.
In the experimental results, there was not much difference between the two models in the
recognition accuracy, while showing a good performance of 97% or more. As a result of
recognizing whole command units consisting of two to five words, the proposed variable
HMM and DNN showed an average recognition rate of 98.2% and 98.4%, respectively,
derived from four types of sentence recognition rates (ranging from two words to five or
more words). For commands composed of two words, both models showed 100% accuracy,
and for other commands, the performance of HMM was slightly lower than that of DNN.
Among the two measures of recognition accuracy, the word error rate showed a much
smaller difference between the two models, and for commands consisting of five or more
words, the performance difference was only 0.04%. The reason is that recognition errors
in sentence units are mostly caused by the misrecognition of only one word included in
a sentence.

On the other hand, the two models showed a big difference in average recognition
time. The HMM showed a recognition time shorter than 0.1 s for command sets of all
lengths, while the DNN showed a significantly longer recognition time as the command
length increased, ranging from 2 s (two words) to 9 s (five or more words). This result is
because the DNN has a more complex model structure than the HMM.

Considering that the non-ideally high recognition time of the DNN model was due
to the influence of the laptop used in the experiment, we additionally measured the
recognition time of the DNN model using a high-spec laptop (Intel i7 (12-core, 2.1 GHz),
16 GB RAM). This result is shown in the last row of Table 4. Because the same program
was evaluated on both laptops, the recognition results did not change, but the average
recognition time showed a difference. For commands of each length, the second laptop
showed recognition times ranging from 0.2 to 0.9 s, reducing the average recognition time
by about 10 times compared to the results in the first laptop. However, even with high-spec
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hardware, the HMM model still showed about 10 times lower recognition time. Therefore,
it can be said that HMM, which has a relatively simple structure, is a suitable model to
recognize the UAV control commands targeted in this study.

We measured the amount of computation using the number of model parameters to
examine the theoretical difference in recognition time between the HMM model and the
DNN model. The amount of computation required to process one speech frame in the
DNN model can be calculated through the following equation.

N(DNN) ≈ (L − 1) ∗ N2 + N ∗ D + N ∗ S, (1)

where L is the number of layers, N is the number of nodes in each layer, D is the dimension
of the feature vector, and S represents the number of nodes in the output layer. The values
of the Kaldi model parameter used in our experiment are as follows: L = 5, N = 650, D = 39,
and S = 2000. Applying these values to (1), about 3 million operations are required to
process one frame during the recognition process.

On the other hand, in the case of the HMM model, the amount of computation required
to process one speech frame is calculated as follows.

N(HMM) ≈ S ∗ M ∗ D ∗ 2, (2)

where S is the number of HMM states, M is the number of GMM mixtures, and D represents
the dimension of the feature vector. The values of the HMM model parameters used in our
experiment are as follows: S = 100, M = 8, and D = 39. Accordingly, about 30,000 operations
are required to process one frame during the recognition process.

That is, the DNN model requires about 100 times the amount of computation of the
HMM model. Furthermore, this theoretical difference is similarly shown in Table 4, with
the average recognition time of the DNN model showing a value about 100 times higher
than that of the HMM model.

3.2. Verification of the Proposed Syntax Analysis Method for the Post-Processing of Mission
Command Speech Recognition

We verified the validity of the proposed grammar network-based syntax analysis
method through speech recognition experiments. As explained in Figure 9, only the first-
rank recognition result of each word is accepted in a general speech recognition framework.
The speech recognition results in Table 4 are the recognition accuracy considering only the
first-rank results.

However, as mentioned in Section 2.3.1, when the correct answer of a specific word
among connected words is ranked second or third, the recognition accuracy can be increased
if these candidates are also considered. To implement this, we proposed a syntax analysis
method using a grammar network. If the first-rank recognition result is found to be incorrect
in the command syntax through the grammar network, the optimal result that matches the
command syntax is obtained by combining the second or third-rank candidate results.

Table 5 represents the speech recognition results after applying the proposed syntax
analysis method. The proposed variable HMM, which was determined to be the most
efficient model in terms of recognition rate and average recognition time in Table 4, was
set as the baseline. Furthermore, the recognition rate was investigated after performing
grammar network-based syntax analysis for the three best candidate results (that is, the
recognition results up to the third rank in the order of output values calculated in HMMs).

Since the commands composed of two words had all correct answers at the first rank
in the baseline, the combination of the first-rank words conformed to the command syntax,
and therefore, all were recognized as correct answers after applying the syntax analysis. In
the case of commands composed of three or more words, the recognition rate increased in
all lengths of command sets after applying the proposed syntax analysis method. These
results demonstrate that when some of the connected words constituting a command are
incorrect, the baseline treats the command as an error, but in the proposed method, many
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of these data are corrected as the correct answers. In particular, the longer the length of
the command, the higher the improvement in the recognition rate by the syntax analysis,
which explains that the longer the length of the command, the more errors occur, and the
proposed method corrects the errors.

Table 5. Speech recognition results (%) of the whole command unit (not word unit) for validation of
the proposed grammar network-based syntax analysis method.

2 Words 3 Words 4 Words 5 or More

Baseline 100 98.5 97.4 96.9
Applying syntax analysis

(proposed) 100 99.7 99.0 98.8

3.3. Verification of the Proposed Semantic Analysis Method for the Post-Processing of Mission
Command Speech Recognition

The evaluation of speech recognition models or syntax analysis can be quantitatively
evaluated through speech recognition experiments, but the quantitative method is not suit-
able for evaluating semantic analysis. Accordingly, we implemented a real-time recognition
system and a collaborative simulation environment of MAVs and UAVs and attempted to
verify the validity of the proposed semantic analysis method.

Figure 13a shows a program for real-time command recognition, and Figure 13b
represents an experimental environment created to simulate the collaboration of three
UAVs named Alpha, Bravo, and Charlie with a MAV pilot. In this simulation environment,
when the pilot issues a command to a device indicating the MAV, the device transmits
the command to the target UAV, and then, the UAV recognizes the command. All these
processes run in real-time.
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We created several collaboration scenarios between MAVs and UAVs in this simulation
environment to verify whether the proposed transaction-based semantic analysis method
works properly while MAVs and UAVs communicate. Figure 14 shows flow charts config-
ured for collaboration scenarios between a MAV and an UAV. The two figures represent
collaboration examples: (a) is a collaboration scenario related to condition monitoring
and location/route management, and (b) is a scenario representing reconnaissance and

260



Aerospace 2023, 10, 841

attack. We made several such scenarios and tested whether the transaction-based semantic
analysis works properly while communicating between the MAV device and the UAV
system in real-time in the MAV and UAV collaborative simulation environment presented
in Figure 13b.
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Figure 14. Flow chart for collaboration scenarios between MAVs and UAVs. (a) shows the takeoff
scenario, and (b) illustrates the reconnaissance and attack scenario.

In Figure 14, the arrows indicate the transaction flow, and the yellow signs indicate the
situation where the MAV pilot delivers a command to the UAV. The solid boxes represent
the transactions the UAV is performing, and the dotted boxes represent the status of the
UAV or the situation the UAV is in. For example, in Figure 14a, the pilot issues a take-off
command, and the UAV enters a transaction called take-off. Afterward, when the pilot
issues a command related to reconnaissance flight, the UAV enters a reconnaissance flight
state. Then, when the pilot issues an environment setup command, the UAV enters the
Flight environment setup transaction. Finally, when the return command is delivered
to the UAV, it changes the UAV into a transaction called mission complete and return.
It is impossible for a transaction to start in an order different from the direction of the
transactions indicated by the arrow in the figure. For example, after the flight environment
setup transaction, the UAV can only enter the mission complete and return transaction
and cannot proceed to the take-off transaction. With this process based on a transaction
concept, we implement flow control of UAVs collaborating with MAVs and utilize this for
semantic analysis of commands to prevent serious situations caused by incorrect speech
recognition results.

We conducted an experiment to verify that the proposed transaction-based semantic
analysis works properly. For example, in the scenario shown in Figure 14a, let us consider
a situation in which a command related to a take-off transaction is entered while the MAV
pilot delivers the environment setup command and the UAV performs a transaction of
flight environment setup. At this time, we checked whether the UAV system correctly
rejected this command by considering it as a context error. As another example, in the
attack scenario of Figure 14b, when a command related to the landing transaction was
entered while performing a transaction of shooting mission, we checked whether the UAV
rejected this command correctly.
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This way, we checked whether 100 normal commands that matched any given trans-
action were correctly accepted and 100 abnormal commands that violated the transaction
were accurately rejected. As a result of the experiment, it was found that all normal com-
mands were correctly accepted, and all abnormal commands were rejected by the proposed
transaction-based semantic analysis method.

4. Conclusions

In this study, we proposed a speech recognition framework for voice-driven UAV
control in a collaborative environment of MAVs and UAVs. The previous study proposed
an efficient noise-cancellation method in an aerial vehicle environment and a multi-channel
voice-triggering method for controlling multiple UAVs for front-end speech recognition. In
this study, we focused on constructing acoustic models for speech recognition and post-
processing to perform syntax analysis and semantic analysis. In a collaborative environment
between MAVs and UAVs, typical commands that a MAV pilot sends to UAVs are in the
form of connected words consisting of at most five words. This study investigated model
construction and post-processing methods suitable for recognizing such connected words
in a UAV system with low hardware capacity.

First, we explored an efficient acoustic model for recognizing connected words, tar-
geting the HMM, known as the statistical modeling method, and the DNN model using
deep learning techniques. In particular, instead of the traditional method using the same
HMM structure for each word, we proposed a HMM structure that reflects the number of
phonemes in a word. In the average recognition rate of four types of sentence recognition
rates (from commands consisting of two words to commands of five or more words), the
DNN-based acoustic model showed higher performance than the traditional HMM, while it
did not show much difference from the proposed HMM. However, in terms of the amount
of computation and recognition time, it was analyzed that the HMM model performs fast
recognition with about 100 times less computation than the DNN model. Furthermore,
it can be concluded that the proposed HMM model is suitable for recognizing connected
words in a UAV system with low hardware capacity.

Naturally, among the various DNN models currently in use, there are models with
relatively low computational complexity. Although this study highlighted the fact that the
HMM model is less computationally intensive than DNN, this is not a claim that the HMM
is the optimal model, and it can be used as an alternative in constrained environments. If
the UAV system has high-performance hardware capacity and can allocate many resources
to driving speech recognition, the DNN model will also be available.

Next, a grammar network-based syntax analysis method was proposed for post-
processing. We configured the structure of the commands that the MAV pilot delivers to the
UAV as a grammar network, and if the connected words obtained as a recognition result do
not pass through this network, it is determined as a syntax error. In addition, when some of
the connected words contain errors, instead of treating the corresponding command as an
error, we corrected the recognition error by reflecting the results in the upper rank among
the candidate results of each word using the proposed syntax analysis method. As a result
of the speech recognition experiment conducted to verify the validity of this method, it
was confirmed that the speech recognition performance was remarkably improved after
applying the proposed syntax analysis method. As a result of recognizing whole command
units consisting of two to five words, the average recognition rates of the baseline approach
and the syntax analysis-based approach were 98.2% and 99.4%, respectively, which means
that the relative improvement in error rate by the syntax analysis reaches 65%.

Finally, we proposed a semantic analysis approach applying the transaction scheme
used in data management. In a very important situation, such as a military operation,
misrecognition of a MAV pilot’s command may lead to serious danger. To handle this
situation, we categorized cooperation missions between MAVs and UAVs as transactions
and mapped each command set to related transactions. Then, while the UAV is performing
a transaction corresponding to a specific mission when the recognition result of a command
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delivered by the MAV pilot does not belong to the transaction, the UAV regards it as a
recognition error and sends a response indicating that the command cannot be accepted.

To verify the validity of this method, we implemented a real-time recognition system
and a collaborative simulation environment of MAVs and UAVs and created several collab-
oration scenarios between a MAV and an UAV. Then, real-time communication between
the MAV and the UAV was performed using the scenarios to confirm that the proposed
semantic analysis works properly. In experiments conducted with about 200 commands, it
was confirmed that normal commands that match a given transaction are correctly accepted,
and commands that do not match are properly rejected.

As described so far, in this study, we introduced a speech recognition framework for
voice-based UAV control in a collaborative environment between MAVs and UAVs, pro-
posed useful methods in each process, and successfully verified the validity of each module
through various speech recognition experiments. The proposed framework consists of
speech database construction, front-end, acoustic model construction, and post-processing
and focuses on minimizing the amount of computation so that each module can be directly
driven in the UAV system. Therefore, the framework is expected to be efficiently applied
in an environment where speech recognition is directly driven in a device with limited
hardware resources.

In future research, we plan to expand this research by studying an efficient speech
recognition framework for voice-driven communication between the ground control center
and an UAV and between the ground control center and a MAV.
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Abstract: In order to determine the fatigue state of air traffic controllers from air talk, an algorithm is
proposed for discriminating the fatigue state of controllers based on applying multi-speech feature
fusion to voice data using a Fuzzy Support Vector Machine (FSVM). To supplement the basis for
discrimination, we also extracted eye-fatigue-state discrimination features based on Percentage of
Eyelid Closure Duration (PERCLOS) eye data. To merge the two classes of discrimination results, a
new controller fatigue-state evaluation index based on the entropy weight method is proposed, based
on a decision-level fusion of fatigue discrimination results for speech and the eyes. The experimental
results show that the fatigue-state recognition accuracy rate was 86.0% for the fatigue state evaluation
index, which was 3.5% and 2.2%higher than those for speech and eye assessments, respectively. The
comprehensive fatigue evaluation index provides important reference values for controller scheduling
and mental-state evaluations.

Keywords: fatigue recognition; air traffic controller; feature fusion; multi-mode

1. Introduction

Rapidly growing flight volumes have resulted in an increasing workload for air traffic
controllers. Research shows that an excessive workload contributes to controller fatigue
and negligence, leading to flight accidents [1]. Therefore, fatigue detection in controllers is
an important means of preventing air traffic safety accidents.

The current research related to fatigue detection can be divided into two categories:
subjective detection and objective detection. Compared to subjective detection methods,
objective detection methods do not require subjects to stop their work, making objective
detection methods more practical. Among them, objective detection can be divided into
contact detection methods such as the ECG signal detection method [2] and the EEG signal
detection method [3]. The contact detection method requires the controller to wear detection
equipment, which is intrusive and may affect the controller’s control work. Therefore, the
non-contact fatigue detection method is more suitable for the controller’s work scenario.

Controllers need to frequently use radiotelephony in their daily work. Previous studies
have shown that the frequency of instruction errors in radio telephony are important
fatigue characteristics [4]. Therefore, radio telephony reflects the current fatigue status of
the controller. The radio telephony fatigue feature detection method is a very practical
and effective detection method. Li [5] conducted a speech-fatigue test on members of
an American bombing crew, and found that the pitch and bandwidth of their speech
signals showed significant changes after a long flight. When the human body is in a state of
fatigue, speech signals will exhibit a decrease in pitch frequency and changes in the position
and bandwidth of the spectral resonance peak [6]. Wu [7] extracted MFCC features from
radiotelephony communications and proposed a self-adaption quantum genetic algorithm,
but their ability to describe audio with only MFCC is limited. A multi-angle description
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of speech should use multiple features. Kouba [8] discussed the use of a contact method
combined with speech, which can more comprehensively present the current fatigue state
of the controller through two modalities. However, the collection of EEG information is
time-consuming and can affect the progress of control work. Vasconcelos’s research [9]
shows that low elocution and articulation rates mean that the pilots are in a fatigue state,
and it shows that recognizing fatigue states through speech recognition is feasible. Studies
have shown that various types of sound quality characteristics reflect the sound quality
changes before and after fatigue.

Traditional speech signal processing usually relies on linear theory. Based on their
short-term resonance characteristics, speech signals can be simulated as a time series
composed of an excitation source and a filter to construct a classic speech signal excitation-
source–filter model [10]. These signals can be described using various model parameters
for further procession and analyses. Recently, speech-signal research has led to scholars
concluding that the process of generating speech signals is a nonlinear process; that is, it
is neither a deterministic linear sequence nor a random sequence, but rather a nonlinear
sequence with chaotic components. Therefore, traditional linear filter models cannot fully
represent the information contained in speech signals [11]. A nonlinear dynamic model of
a speech signal is generally constructed using a delay-phase diagram that is obtained by
reconstructing the time series of a one-dimensional speech signal in the phase space [12].
Previous studies also showed that the fatigue state of the human body influences the phase-
space track of speech, especially the degree of chaos in its phase space [13]. Considering the
respective characteristics of both linear and non-linear speech features, this paper extracts
linear features and non-linear features for air talk at the same time, and fuses the two types
of features to create the features of controller’s fatigue speech.

In the field of fatigue recognition, the face is considered an important information
system which contains the fatigue status of the subject. Many scholars have considered
information about the eye in fatigue detection research. Wierwille [14] analyzed the rela-
tionship between a driver’s eye closure time and the collision probability in experiments on
driving fatigue, and found that eye closure time can be used to characterize fatigue. The US
Transportation Administration also conducted experiments investigating nine parameters
including blink frequency, closure time, and eyelid closure, and demonstrated that these
characteristics can also be used to characterize the degree of fatigue. Jo et al. [15] proposed
an algorithm for determining the eye position of drivers based on blob features. Some
scholars applied principal-components analysis [16] and linear discriminant analysis [17]
to extract ocular features, and finally judged the fatigue state of a driver using a support
vector machine (SVM) classifier. It can be seen that eye features have important reference
value in fatigue recognition. When the controller stops sending radio telephony, we use his
eye features to determine the current fatigue state. To this end, we perform feature-level
fusion and decision-level fusion on the controller’s voice features and eye features.

Multi-source data fusion can provide the model with richer detailed features. Com-
pared with previous research that relied entirely on radio telephony or facial data, a
multi-source feature fusion approach is adopted in this study by extracting various speech
features from radio telephony and integrating speech features with facial features, propos-
ing a method for controller fatigue recognition through multi-source feature fusion. In
our model, different speech features are fused at the feature layer and passed through a
classifier for speech fatigue feature recognition. The recognition results for eye fatigue
characteristics and the recognition results for voice fatigue characteristics are fused at the
decision-making level via a weighting method to obtain the best fatigue recognition results.
In order to verify the effectiveness and robustness of our model, in the experimental part we
collected data from a total of six controllers in tower control and approach control positions.
In addition, our data collection experiment lasted for one week, and the data from each
licensed controller can be divided into six periods, so the data obtained are sufficiently
representative.

The main contributions of this work are listed as follows:
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1. This paper performs linear feature extraction and nonlinear feature extraction, respec-
tively, for radio telephony, and uses FSVM to perform fatigue recognition for speech
fusion features.

2. In order to detect the fatigue status of the controller when he stops sending radio
telephony, this paper extracts eye-fatigue-feature PERCLOS, and evaluates the fatigue
status of the controller using a threshold method.

3. This paper uses a weighting method to perform decision-making fusion based on
the fatigue recognition results for voice features and facial features, and conducts
experiments to verify the effectiveness and robustness of the model.

This paper is structured as follows: In Section 2, we introduced the multi-level infor-
mation fusion model used in this paper, including the model’s feature extraction from data
sources, feature fusion, fusion feature recognition, and the decision layer fusion process
based on two types of recognition results. In Section 3, we introduced the controller fatigue
feature extraction recognition experiment carried out in this paper, including the process
of collecting fatigue data and the processing results according to the model used in this
paper. The last part is our summary of this paper. Section 4 draws together our conclusions,
demonstrating that the accuracy of our multi-level information fusion model is enhanced
when processed using the FSVM classifier.

2. Methods

Currently, in the field of speech processing recognition, there are various speech
features. We can divide them into three categories: spectral features, statistical features,
and nonlinear features. We choose one from each category so that our data fusion can
depict speech from three different perspectives. Here we extract the Mel frequency cepstral
coefficient (MFCC), short-time-average zero-crossing rate, and maximum Lyapunov index.
Based on the use of the percentage of eyelid closure over time (PERCLOS) as the eye
features, feature fusion was applied to the features of the two types of data sources, and an
evaluation index system was established.

The structure of the fatigue evaluation index is shown in Figure 1.
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Figure 1. Fatigue-detection scheme based on multilevel information fusion.

2.1. Speech Feature Classification Algorithm Based on the FSVM

In fatigue detection, the fuzzy samples in the feature space often lead to reduction of
the classification interval and affect the classification performance of the classifier [18]. In
practical applications, training samples are often affected by some noise. This noise may
have adverse effects on the decision boundary of the SVM, leading to a decrease in accuracy.
To solve this problem, this paper introduces the idea of a fuzzy system and combines it
with an FSVM algorithm.

Here, the membership function is first introduced. A membership function is a concept
in fuzzy sets that represents the degree to which each element belongs to a certain fuzzy set,
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with the degree value ranging between 0 and 1.The principle behind the algorithm in the
FVSM is to add a membership function µ(xi) to the original sample set (xi, yi), i = 1, 2, . . . , n,
so as to change the sample set to {xi, yiµi(xi)}, i = 1, 2, . . . , n. Membership function µ(xi)
refers to the probability that the ith sample belongs to the yi category; this is referred to as
the reliability, where 0 < µ(xi) ≤ 1, and a larger µ(xi), indicates a higher reliability. After
introducing the membership function, the SVM formula can be expressed as

min Φ(w) =
1
2
‖w‖2 + C

n

∑
i=1

µ(xi)ξi

s.t.yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0, 0 < µ(xi) ≤ 1, i = 1, 2, . . . , n (1)

where w is the classification interface vector, ξi is the relaxation factor, C is the penalty factor,
and b is the classification threshold. The original relaxation variable ξi is replaced by µ(xi)ξi
since the original description of the error in the sample does not meet the conditions for the
relaxation variable presented in the form of the weighted error term of µ(xi). Reducing
the membership degree of sample µ(xi) weakens the influence of error term µ(xi)ξi on
the objective function. Therefore, when locating the optimal segmentation surface, xi
can be regarded as a secondary (or even negligible) sample feature, which can exert a
strong inhibitory effect on isolated samples in the middle zone, and yield a relatively good
optimization effect in the establishment of the optimal classification surface. The quadratic
programming form of Formula (1) is dually transformed to

max
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjK(xi, xj)

s.t.0 ≤ αi ≤ µ(xi)C, ∑n
i=1 αiyi = 0, i = 1, 2, . . . , n (2)

In this formula, α is the Lagrange multiplier. The constraint condition is changed from
0 ≤ αi ≤ C to 0 ≤ αi ≤ Cµ(xi), and the weight coefficient is added to penalty coefficient C.
For samples xi with different membership degrees, the added penalty coefficients are also
different: µ(xi) = 1 indicates the ordinary SVM, while when µ(xi)→ 0 sample αi becomes
too small, its contribution to the optimal classification plane will also become smaller.

In the optimal solution α*
i = (α*

1, α*
2, . . . , α*

n)
T , the support vector is the nonzero solu-

tion of α*
i > 0. After introducing the membership function, α*

i is divided into two parts:
(1) the effective support vector distributed on the hyperplane; that is, the sample corre-
sponding to 0 ≤ αi ≤ Cµ(xi), which meets the constraint condition; and (2) the isolated
sample that needs to be discarded according to the rules; that is, the sample corresponding
to αi > Cµ(xi). Therefore, the classification ability of each SVM is tested by the member-
ship function, and finally the FSVM decision model is obtained. For any given test sample
{(xi, yi, si)}n

i=1, perform the following calculation:

f (x) = sgn
[
∑i∈SV α∗i yiK(xi, x) + b∗

]
(3)

where
b∗ = yi −∑n

j=1 yjajK(xi, xi), i ∈ {i|0 < a∗i < µ(xi)C}

However, the traditional membership function (see Figure 2) usually only considers
the distance between the sample and the center point. Therefore, when there are isolated
samples or noise points close to the center point, they will be incorrectly assigned a
higher membership.
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In Figure 2, two colors of shapes represent two classes of samples. In traditional
membership functions, the yellow line represents SVM, and the blue straight line represents
the hyperplane of SVM. In normal-plane membership functions, the blue straight line
represents the classification hyperplane, while the yellow straight line represents the degree
to which each sample point belongs to a certain class, and the area between the yellow
lines is the fuzzy region. As shown in the traditional membership functions in the left
part of Figure 2, in the triangle samples of the positive class, the distance d1 between the
isolated sample and the sample center is basically the same as the distance d2 between
the support sample and the sample center, and so the two samples will be prescribed the
same membership value, which will adversely affect the determination of the optimal
classification plane.

In order to avoid the above situation, a membership function of the normal plane is
proposed, which involves connecting the center points of positive and negative samples
to determine the normal plane, and synchronously determining the hyperplane of the
sample attribute. In this approach, the sample membership is no longer determined by the
distance between the sample and the center point, but by the distance from the sample to
the attributed hyperplane. As shown in the right part of Figure 2, the distance between the
isolated sample and the sample center becomes d3, and the distance between the supporting
sample and the sample center becomes d4, which is better for eliminating the influence of
isolated samples.

In the specific calculation, first set the central point of positive and negative samples as
xo+ and xo− , respectively, and n+ and n− as the number of positive and negative samples,
and calculate their center coordinates according to the mean value:

xo+ =
1

n+
∑n+

i=1 xi, xo− =
1

n−
∑n−

i=1 xi, n+ + n− = n (4)

→
w = xo+ − xo− is the vector connecting the centers of the two samples, and normal

vector
→T
w is obtained by transposing

→
w = xo+ − xo− . Then the hyperplane to which the

two samples belong is




→T
w (x− xo+) = 0, Positive sample hyperplane
→T
w (x− xo−) = 0, Negative sample hyperplane

(5)
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Then the distance from any sample xi to its category hyperplane is





di+ =

∣∣∣∣
→T
w (xi−xo+ )

∣∣∣∣∥∥∥∥
→T
w
∥∥∥∥

, i f yi = +1

di− =

∣∣∣∣
→T
w (xi−xo− )

∣∣∣∣∥∥∥∥
→T
w
∥∥∥∥

, i f yi = −1

(6)

If the maximum distance between positive samples and the hyperplane is set to
D+ = max (di+), and the maximum distance between negative samples and the hyperplane
is set to D− = max (di−), then the membership of various inputs is

µ(xi) =

{
1− di+

D++δ , i f yi = +1

1− di−
D−+δ , i f yi = −1

(7)

where δ takes a small positive value to satisfy 0 < µ(xi) < 1.
In the case of nonlinear classification, kernel function K(xi, xj) is also used to map the

sample space to the high-dimensional space. According to mapping relationship ϕ(x), the
center points of the positive ϕ(xo+) and negative ϕ(xo−) samples become

ϕ(xo+) =
1

n+
∑n+

i=1 ϕ(xi), ϕ(xo−) =
1

n−
∑n−

i=1 ϕ(xi), n+ + n− = n (8)

The distances from the input sample to the hyperplane can then be expressed as

{
di+ =

[
ϕ(xo+)− ϕ(xo−)]

T [ϕ(xi)− ϕ(xo+)], i f yi = +1
di− =

[
ϕ(xo+)− ϕ(xo−)]

T [ϕ(xi)− ϕ(xo−)], i f yi = −1
(9)

This formula can be calculated using inner product function K(xi, xj) in the original
space rather than ϕ(x). Then, the distance of positive sample x from the positive hyperplane
is

di+ =
[
ϕ(xo+)− ϕ(xo−)]

T [ϕ(x)− ϕ(xo+)]

= 1
n+

i=1
n+

∑ ϕ(xi) · ϕ(x)− 1
n−

j=1
n−
∑ ϕ

(
xj
)
· ϕ(x)−


 1

n+

i=1
n+

∑ ϕ(xi)


 ·


 1

n+

j=1
n+

∑ ϕ
(
xj
)

+


 1

n+

i=1
n+

∑ ϕ(xi)


 ·


 1

n−

j=1
n−
∑ ϕ

(
xj
)



= 1
n+

i=1
n+

∑ K(xi, x)− 1
n−

j=1
n−
∑ K

(
xj, x

)
− 1

n2
+

i=1
n+

∑

j=1
n+

∑ K
(
xi, xj

)
+ 1

n+n−

i=1
n+

∑

j=1
n−
∑ K

(
xi, xj

)

(10)
Similarly, the distance of negative sample x from the negative hyperplane is

di− =
1

n+

i=1
n+

∑ K(xi, x)− 1
n−

j=1
n−

∑ K
(
xj, x

)
− 1

n2
−

i=1
n−

∑
j=1
n−

∑ K
(

xi, xj
)
+

1
n+n−

i=1
n+

∑
j=1
n−

∑ K
(
xi, xj

)

(11)
The parameters in Formula (7) can be obtained from Formulas (10) and (11). Therefore,

by combining Formulas (10), (11), and (7), we can solve for µ(xi), which gives us the
proportion of various input quantities.

2.2. Eye-Fatigue Feature Extraction Algorithm Based on PERCLOS

This section describes eye feature extraction. PERCLOS refers to the proportion of
time that the eye is closed and is widely used as an effective evaluation parameter in the
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field of fatigue discrimination. P80 in PERCLOS, which corresponds to the pupil being
covered by more than 80% of the eyelid, was the best parameter for fatigue detection, and
so we selected this as the judgment standard for eye fatigue [19].

Before extracting PERCLOS, we first need to identify the closed state of the eyes. This
is addressed here by analyzing the aspect ratio of the eyes. Figure 3 shows images of a
human eye in different states. When the eye is fully closed, the eye height is 0 and aspect
ratio λ is the smallest. Conversely, λ is largest when the eye is fully open.
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We calculate the PERCLOS value by applying the following steps:

1. Histogram equalization

Histogram equalization of an eye image involves adjusting the grayscale used to
display the image to increase the contrast between the eye, eyebrow, and skin color areas,
and thereby make these structures more distinct, which will improve the extraction accuracy
of the aspect ratio [20]. Figure 3 (1) and (2) show images before and after histogram
equalization processing, respectively.

2. Image binarization

Considering the color differences in various parts of the eye image, it is possible to
set a grayscale threshold to binarize each part of the image [21]. Through experiments, it
was concluded that the processing effect was optimal when the grayscale threshold was
between 115 and 127, and so the threshold was set to 121. Figure 4 (3) shows the binarized
image of the eye, and the negative image in Figure 4 (4) is used for further data processing
since the target area is the eye.
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3. Calculating eye aspect ratio

Determining the minimum bounding rectangle for the binary image, as shown in
Figure 5, yields two rectangles of the eyebrow and eye. The lower one is the circumscribed
rectangle of the eye, and the height and width of the rectangle correspond to the height
and width of the eye.
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Height h and width w of the rectangle are obtained by calculating the pixel positions of
the four vertices of the rectangle, with the height-to-width ratio of the eye being calculated
as λ = h/w. P80 was selected as our fatigue criterion, and so when the pupil is covered by
more than 80% of the eyelid, we consider this to indicate fatigue. The height-to-width-ratio
statistics for a large number of human eye images were used to calculate the λ values of
eyes in different states. We defined 0.12 ≤ λ ≤ 0.23 as a closed-eye state, and λ ≥ 0.23 as
an open-eye state [22]. Figure 6 shows the aspect ratio of the eye for different closure states.
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4. Calculating the PERCLOS value

The principle for calculating the PERCLOS value based on P80 is as follows: assuming
that an eye blink lasts for t1− t4, where the eyes are open at moments t1 and t4, and the time
when the eyelid covers the pupil for more than 80% is t2 − t3, then the value of PERCLOS
is

PERCLOS =
t3 − t2

t4 − t1
× 100% (12)

Considering that the experiments involved analyzing eye-video data, continuous
images can be obtained after frame extraction, and so the timescale can be replaced by
fps = 30 with fixed image frames; that is, by analyzing the video of the controller’s eye
control over a certain period of time, the total number of images collected in the data is M,
and the number of closed eyes is N, then the value of PERCLOS is

PERCLOS =
N
M
× 100% (13)

Figure 7 shows that the PERCLOS value (for P80) is positively correlated with the
degree of fatigue. Therefore, we can take the PERCLOS value of controllers as the indicator
of their eye fatigue, and quantitatively describe the fatigue state of controllers through
PERCLOS (P80).
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2.3. Decision-Level Fatigue-Information Fusion Based on the Entropy Weight Method

The concept of entropy is often used in information theory to characterize the degree
of dispersion in a system. According to the theory behind the entropy weight method, a
higher information–entropy index indicates data with a smaller degree of dispersion, and
the smaller the impact of the index on the overall evaluation, the lower the weight [23].
According to this theory, the entropy weight method determines the weight according to the
degree of discreteness in the data, and the calculation process is more objective. Therefore,
the characteristics of information entropy are often used in comprehensive evaluations of
multiple indicators to reasonably weight each indicator.

The main steps of the entropy weight method are as follows:
1. Normalization of indicators. Assuming that there are n samples and m indexes, xij

represents the value of the jth indicator (j = 1, 2, . . . , m) corresponding to the ith sample
(i = 1, 2, . . . , n), then the normalized value xij

* can be expressed as

xij
∗ =

xij − xj
min

xj
max − xj

min

(14)

where xj
min and xj

max represent the minimum and maximum values of the indicators,
respectively.

2. Calculate the proportion of the ith sample value under index j:pij =
x∗ij

∑n
i=1 x∗ij

.

3. Calculate the entropy of index j. According to the definition of information entropy,
the information entropy of a set of data values is

Ej = −ln (n)−1∑
n ∑ij
i=1 Pijln (15)

where, when pij = 0, the information entropy is

lim
pij→0

pijln pij = 0 (16)

4. Calculate the weight of each indicator.

Wj =
1− Ej

∑m
j=1 (1− Ej)

(17)

After obtaining the information entropy of each index, the weight of each index Wj
can be calculated using Formula (17).
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3. Experiments and Verification
3.1. Data Acquisition Experiment

The experimental data were collected from the air traffic control simulation laboratory.
We used the same type of simulator equipment as the Air Traffic Control Bureau at the
experiment scenario, and invited six licensed tower controllers to participate in data
collection with the cooperation of the Air Traffic Control Bureau.

Specifically, the radar control equipment in the experiment is shown in Figure 8. Key
data acquisition equipment includes controller radio telephony recording equipment and
facial data acquisition equipment. Speech data were collected directly from the radio
telephony communication system, and eye-video data were collected using a camera with
a resolution of 1280 × 720 at 30 fps. The participants included three male and three female
certificated air traffic controllers from the Air Traffic Control Bureau. They are all from East
China and have more than three years of controller work experience. All subjects were
required to have adequate rest (>7 h) every night on rest days, and no food, alcohol, or
drinks that might affect the experimental results. All experimental personnel were fully
familiar with the control simulator system. All subjects were informed of the experiment’s
content and had the right to stop the experiment at any time.
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The experiment lasted for one week, and was designed according to the scheduling
system in the actual control work. Severe fatigue is less common during the work process
of air traffic controllers. We increased the workload appropriately to avoid a significant
difference between the amount of data collected in the non-fatigued and fatigued states.
During the week, the six controllers were conducted 24 h of experiment every day on
Monday, Wednesday, Friday, and Sunday, and the controllers were prescribed to have
complete rest on Tuesday, Thursday and Saturday, and they were required to sleep for more
than seven hours. Each experimental day contained six periods of work and six periods of
rest of two hours each. Each controller worked for two hours, rested for two hours, and
completed the experiment for 24 h in turn. This experimental design was fully consistent
with the characteristics of the actual controller post. On the experimental days, the first set
of work experiments were conducted from 0:00 to 2:00 for each controller. After two hours
of work, the first period of rest was started from 2:00 to 4:00. At the end of each period
of work, each controller was asked to fill in the Karolinska Sleepiness Scale (KSS) [24],
which took 10 min. They then rested for 110 min. After two hours of work, the controller is
scheduled to rest for two hours, which is entirely consistent with the actual work schedule
of the controller. The controlled work experiments alternated with rest periods, with up to
12 h of work and 12 h of rest periods within each working day.

KSS is a reliable fatigue detection scale, with scores ranging from one to ten reflecting
the subject’s state from alert to almost unable to maintain clarity. According to the usual
practice of KSS, when the questionnaire score is greater than or equal to seven, we determine
that the controller is in a state of fatigue. At the end of the experiment, fatigue was
determined according to the fatigue scale filled out by each controller, which was used as
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the label for the test data. After the experiment, we obtained a total of 462 min of valid
voice data and 29 h of valid facial-video data.

3.2. Experiments on Speech-Fatigue Characteristics

We first combined traditional speech features including the MFCC, short-time-average
zero-crossing rate, and maximum Lyapunov index, and verified the effectiveness of the
FSVM using the classification accuracy of these features. We extracted the largest Lyapunov
exponent λmax in the speech signal using data near-fitting and the characteristics of small-
sample data. Figure 9 shows the fusion detection process for multiple speech features.
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Figure 9. Speech-fatigue feature detection process.

In order to obtain a clearer understanding of the classification performance of each
classifier, we input relevant parameters, as presented in Table 1.

Table 1. Internal classifier parameters.

Classification
Algorithm Penalty Parameter C Kernel-Function

Scaling Parameter σ
Number of Support

Vectors

Standard SVM 64 0.0625 62
Improved FSVM 128 0.125 39

We selected 2010 speech data (for three males and three females) from the controller
speech database as the training set (comprising 1030 fatigue samples and 980 normal
samples) for target feature extraction and analysis. Data collected in the past has been
processed as necessary and divided into short frames with a window function length of
25 ms. The step size between successive windows was set to 10 ms, and the number of
filters used was 40. According to the feature extraction method, the 12th-order MFCC,
short-time-average zero-crossing rate, and maximum Lyapunov exponent were extracted
from the speech samples under fatigue and normal conditions. The extraction results were
tested statistically to identify which of the above features differed significantly from the
fatigue state; the results are presented in Table 2.

Table 2. Differences in speech features between different states.

Phonetic Feature Normal Sample Fatigue Sample t Significance (p = sig)

Short-time-average zero-crossing
rate (times/frame) 71.4 ± 6.2 66.9 ± 7.3 3.67 p = 0.041 < 0.05

12th-order MFCC −0.91 ± 0.47 0.14 ± 0.51 7.62 p < 0.01
Maximum Lyapunov exponent 0.34 ± 0.07 0.25 ± 0.05 10.2 p < 0.01

We performed an Analysis of Variance (ANOVA) on three speech features. Our
hypotheses are: (1) the short-time-average zero-crossing rate speech feature is related to
the level of fatigue; (2) the 12th-order MFCC speech feature is related to the level of fatigue;
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(3) the maximum Lyapunov exponent speech feature is related to the level of fatigue. The
mean ± standard deviation values are shown in Table 2.

In Table 2, the “Normal sample” represents the mean ± standard deviation of the
speech features under normal conditions, while the “Fatigue sample” represents the
mean ± standard deviation of the speech features under fatigue conditions. The “t” repre-
sents the t-test, which is the difference between the sample mean and the population mean.
The significance level “p” represents the probability of the previous three hypotheses being
true. Since the p-values in Table 2 are all less than 0.05, the three types of speech features
have changed significantly under fatigue conditions. The significance level p-values of
MFCC and maximum Lyapunov exponent are less than 0.01, so the differences in these
two features before and after the controller’s fatigue can be considered to be significant,
and these two features are particularly good at representing the fatigue state of the human
body. Although the significance level p-value of the short-time average zero-crossing rate
is slightly higher than that of MFCC and maximum Lyapunov exponent, its value is still
less than 0.05, so this type of speech feature can also be used for fatigue detection.

In order to verify the usefulness of various speech features in detecting controller
fatigue, we combined the features in different ways and used the standard SVM and the
improved FSVM to classify and detect each combination. We use the data from the previous
databases as the training data and the data collected in this experiment as the test data.
The two types of speech data are strictly separate for classifiers. The test results after 50%
cross-validation are presented in Table 3.

Table 3. Test results for speech-fatigue characteristics.

Group SVM Accuracy FSVM Accuracy

MFCC + short-time-average zero-crossing rate 75.4% 77.1%
MFCC + maximum Lyapunov index 78.3% 79.5%

Short-time-average zero-crossing rate + maximum Lyapunov index 73.1% 73.8%
MFCC + short-time-average zero-crossing rate + maximum Lyapunov index 80.4% 82.5%

Table 3 indicates that the fatigue classification performance was worse for the short-
time-average zero-crossing rate than for the other two features. Combining the three
features produced the best classification performance, which was due to the traditional
features and nonlinear features complementing each other. Moreover, the table indicates
that the improved FSVM classifier had higher accuracy than the traditional SVM, which
was due to the optimization of the membership determination method.

3.3. Experiments on Eye-Fatigue Characteristics

The OpenCV software library was used to detect eyes in the images. The human-eye-
detection algorithm adopted in this study can accurately determine the eye area in both the
open- and closed-eye states.

This study analyzed sub-images of the right eyes of the experimenters, and calculated
the aspect ratio λ of the eye by applying equalization, binarization, and other processing
methods to the images. The calculation process of the length-width ratio of the eye is
shown in Figure 10.Among the 3783 eye images extracted, 748 images had λ values of
<0.23, resulting in an eye PERCLOS value of 0.20 for experimenter 1 during this period.

In order to determine the fatigue value of controllers at different time periods more
objectively, the Maximum Continuous Eye Closure Duration (MCECD) characteristic values
of the experimenters during that time period were synchronously calculated according to
the longest continuous eye-closure time within a single time period. As the degree of fatigue
increases, the eyes become more difficult to open from a closed state, or more difficult to
keep open when in an open state, leading to an increase in MCECD [25]. Considering that
the radar signals used for air traffic control are updated every 4 s, we used a 40 s time
window to detect the MCECD value of the controller during each time period, and included
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it in the calculation of the eye-fatigue value. We considered that a subject was in a state of
fatigue when their eye-fatigue value was >0.3. Therefore, 0.3 is set as the threshold value.
When MCECD is greater than 0.3, the subject is considered to be in a state of fatigue; when
MCECD is less than or equal to 0.3, the subject is considered to be in a state of no fatigue.
The fatigue state of the six air traffic controllers was judged using the threshold method,
and the average value was taken. The accuracy of the discrimination results compared with
the results of the KSS scale was shown in the following table. The corresponding accuracy
values are listed in Table 4.
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Table 4. Eye-fatigue values calculated for experimenter 1.

Time Interval MCECD (s) Eye-Fatigue Value Accuracy

0:00–2:00 0.48 0.34 83.2%
4:00–6:00 0.08 0.34 82.2%

8:00–10:00 0.82 0.33 79.5%
12:00–14:00 0.77 0.18 78.9%
16:00–18:00 0.97 0.23 88.1%
20:00–22:00 0.82 0.19 86.6%

The experimental results in Table 4 indicate that the average accuracy in identifying
fatigue state based on eye characteristics was 83.08%. The experimental results show that
the eye features have a high average accuracy in recognizing the fatigue characteristics of
different controllers at different time periods, therefore, the eye fatigue features have good
application values.

3.4. Multisource Information-Fusion Fatigue-Detection Experiment

The speech features were also evaluated numerically. By combining the trained
decision model with f (x), we applied sentence-by-sentence detection to the control speech
data of each experimenter during each time period. This yielded the proportion of fatigued-
speech epochs to the total number of speech epochs during the entire time period, which
was used as the characteristic value for that experimenter’s fatigued speech during this
time period. The speech-fatigue detection results are presented in Table 5.

According to the theory of the entropy weight method, this study first assigned weights
to the speech-fatigue value and eye-fatigue value at the decision level. We calculated the
weights of the eye indicators and speech indicators of the six experimenters by normalizing
the data and calculating the information entropy. The results are presented in Table 6.
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Table 5. Speech-fatigue detection results for experimenter 1.

Time Period Total Number of
Fatigued-Speech Epochs

Total Number of Speech
Epochs Fatigue Value

0:00–2:00 23 308 0.07
4:00–6:00 50 290 0.17

8:00–10:00 27 289 0.09
12:00–14:00 53 309 0.17
16:00–18:00 56 274 0.20
20:00–22:00 56 259 0.22

Table 6. Sample weights of the experimenters.

Experimenter Eye Indicators Speech Indicators

1 0.55 0.45
2 0.58 0.42
3 0.55 0.45
4 0.53 0.47
5 0.59 0.41
6 0.57 0.43

Based on the sample data from all experimenters, we averaged the weights of the
indicators and used them as comprehensive indicator weights. The final indicator weights
for the eye- and speech-fatigue values were 0.56 and 0.44, respectively. Based on the weights
of the comprehensive indicators, we could obtain the comprehensive fatigue values of
controllers at different time periods. We considered that a comprehensive fatigue value
of >0.2 indicated a state of fatigue. Table 7 presents the comprehensive fatigue results for
all experimenters.

Table 7. Recognition accuracy of the comprehensive fatigue value.

Time Period Comprehensive Fatigue Value Accuracy

0:00–2:00 0.22 84.3%
4:00–6:00 0.25 85.2%
8:00–10:00 0.21 81.7%

12:00–14:00 0.18 89.6%
16:00–18:00 0.22 84.9%
20:00–22:00 0.20 90.3%

The experimental results show that the recognition accuracy of the fatigue state based
on integrated features was 86.0%, which was 2.2% and 3.5% higher than those for eye
and speech features, respectively, indicating that fatigue recognition after fusion was more
robust. In the experiment, some samples could not be correctly classified. The reason is that
different controllers have different vocal characteristics and facial expression characteristics.
It is undeniable that some people’s voice quality, timbre, and features such as eyes are
similar to the performance of others when they are fatigued, which makes it difficult
for the model to classify correctly. It can be seen that fatigue recognition still has great
research potential.

4. Conclusions

This paper aims to solve the controller fatigue detection problem by first collecting
linear and nonlinear radio telephony features. Then, the fused radio telephony features are
classified and identified. Finally, the radio telephony recognition results and the eye fatigue
feature recognition results are combined for decision-making to achieve a comprehensive
assessment of the controller’s fatigue status.
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The experimental results show that different speech feature combinations have dif-
ferent recognition accuracies, among which Mel Frequency Cepstral Coefficient + short-
time-average zero-crossing rate + maximum Lyapunov index has the highest recognition
accuracy. In the case of the fuzzy support vector machine classifier, the accuracy reached
82.5% compared to the evaluation results using the fatigue scale KSS. The accuracy in iden-
tifying fatigue state based on eye characteristics was 83.8%. For voice features and facial
features, the initial fatigue results for the speech and eye feature layers were weighted using
the entropy weight method, and finally comprehensive controller fatigue characteristic
values were obtained through decision-level fusion. The accuracy of the fatigue detection
method combined with eye and speech features was 86.0%, which was 2.2% and 3.5%
higher than those for eye and speech features, respectively. The present research findings
can provide theoretical guidance for air traffic management authorities to detect ATC
fatigue. They might also be useful as a reference for controller scheduling improvement.

If the controllers’ clearances often need to be corrected, the controller may be fatigued.
In the future, we hope to study the relationship between the number of corrections in the
controller’s radiotelephony and the multiple levels of fatigue.
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Abstract: This paper describes the safety assessment conducted in SESAR2020 project PJ.10-W2-96 ASR
on automatic speech recognition (ASR) technology implemented for air traffic control (ATC) centers.
ASR already now enables the automatic recognition of aircraft callsigns and various ATC commands
including command types based on controller–pilot voice communications for presentation at the
controller working position. The presented safety assessment process consists of defining design
requirements for ASR technology application in normal, abnormal, and degraded modes of ATC
operations. A total of eight functional hazards were identified based on the analysis of four use cases.
The safety assessment was supported by top-down and bottom-up modelling and analysis of the causes
of hazards to derive system design requirements for the purposes of mitigating the hazards. Assessment
of achieving the specified design requirements was supported by evidence generated from two real-time
simulations with pre-industrial ASR prototypes in approach and en-route operational environments. The
simulations, focusing especially on the safety aspects of ASR application, also validated the hypotheses
that ASR reduces controllers’ workload and increases situational awareness. The missing validation
element, i.e., an analysis of the safety effects of ASR in ATC, is the focus of this paper. As a result of the
safety assessment activities, mitigations were derived for each hazard, demonstrating that the use of
ASR does not increase safety risks and is, therefore, ready for industrialization.

Keywords: safety assessment; air traffic control; automatic speech recognition; workload; situational
awareness; en-route sector; approach sector

1. Introduction

Automatic speech recognition (ASR) in the air traffic management (ATM) domain
is seen as a promising technology for improving efficiency and safety [1]. Use of ASR
technology in ATC environments consists of three conceptual steps. First, a speech-to-
text conversion is performed, i.e., an ATC utterance such as “lufthansa two seven victor
descend flight level two hundred” is transcribed from the speech signal into a sequence of
words. This is followed by the text-to-concepts transformation, i.e., the semantics of the
transcription are extracted as machine-readable ontology-conforming annotations with
aircraft callsigns and various command elements such as “DLH27V DESCEND 200 FL”. In
the third step, the output of the two preceding steps is directly presented on the air traffic
controllers’ (ATCO) human machine interface (HMI) enabling, amongst other benefits, the
replacement of manual HMI inputs by the ATCOs. The following ASR functionalities were
covered by the safety assessment relevant to this paper:

1. Recognition of relevant aircraft callsigns from ATCO and pilot utterances as well as
highlighting the callsigns on the controller working position (CWP) HMI display.
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2. Recognition of ATCO commands and input of the command contents into the aircraft
radar data labels displayed at the ATCO CWP HMI.

As the ASR technology is relatively new, it is not yet deployed in the various ATM sys-
tems developed by the industry. This is due in part to the fact that European regulation [2]
requires any new technology introduced into the operational environment undergoes a
rigorous safety assessment conducted at the design phase, providing relevant evidence that
the physical design satisfies the design requirements. The safety of two ASR prototypes for
air traffic control (ATC) purposes supported by artificial intelligence (AI) has been assessed
by Integra in accordance with the Single European Sky Air Traffic Management Research
(SESAR) safety reference materials [3] in the course of SESAR2020 project PJ.10-W2-96-
ASR [4,5]. The safety assessment includes several steps, starting at the design level with the
assessment of the introduction of a new system—or a change to an existing system—for
the identification of any hazards introduced by the new system elements, and possible
associated increase in risks. The system must be proven to be safe in a specific environment
by demonstrating that the level of safety is not degraded, and that at least the same level of
safety can be achieved as prior to the introduction of the change.

The considered ASR prototypes were designed to improve ATCOs’ situational aware-
ness, reduce their workload and increase their productivity. The scope of the safety assess-
ment considered application of ASR supporting ATCOs with the aforementioned goals in
approach and en-route sectors of medium traffic complexity.

The main goal of this article is to evaluate possible safety risks introduced by the
implementation of ASR and the possible impact of these risks on ATC operations, in
order to derive mitigations formulated as system design requirements. In the next step,
these system design requirements are implemented into two pre-industrial prototype
platforms to demonstrate the feasibility of the evaluated design and expected safety levels
of system performance.

In the next section, we provide background work of ASR applications in the ATM
domain, including previous safety-related work performed on the topic. In Section 3,
the safety assessment performed in the context of ASR application developed in project
PJ.10-W2-96 to derive the safety requirements for the design is described. In this section,
we also describe the setup of the human-in-the-loop simulations that were conducted to
gather the evidence required for the safety assessment. Section 4 presents the results of the
two simulations and the safety assessment related results and also the limitations of this
study, which is based on only two validation experiments. Concluding remarks are given
in Section 5. Lastly, two appendices are included containing additional information for the
hazard analysis performed.

2. Background

The SESAR2020 project PJ.16-04 “CWP HMI” (Controller Working Position Human Ma-
chine Interface) [6] investigated the feasibility of ASR with early prototypes applied in the air
traffic control domain. Those prototypes were validated in laboratory-like environments
equivalent to technology readiness level (TRL) 4 as per industrial research development
standards [7]. Technology readiness levels (TRLs) are a method for estimating the ma-
turity of technologies during research and development phase, that enables consistent
and uniform assessment. TRLs are based on a scale from 1 to 9 with 9 being the most
mature technology.

The basis of this paper, i.e., the follow-up project PJ.10-W2-96 [4,5] continued devel-
oping the application with the aim of demonstrating the technology feasibility in relevant
operational environment (TRL6). In parallel, the project PJ.05-W2-97 HMI Interaction
modes for Airport Tower aimed to develop an ASR system for an aerodrome control tower
environment [8]. The ATCO2 platform [9] aims at collecting, pre-processing, and pseudo-
anonymizing ATC communications’ audio databases of more than 5000 h of audio data
with the objective of increasing robustness of speech recognition in the air traffic man-
agement domain. The ATCO2 corpus has also been used to detect speaker roles in voice
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communication, i.e., pilot or ATCO, and clustering speakers [10]. Given enough training
data, automatic speech recognition and understanding systems also build the base to train
ATCOs [11]. A common goal of prior presented ASR research projects was to define an
initial ontology for the annotation of ASR recognized ATC concepts such as command
types, values, units, and qualifiers, to be later coordinated and agreed between major
European ATM stakeholders enabling industrialization of the technology [12].

Early results demonstrated that ASR facilitated safety in operational environments by
detection of read-back errors from comparison of controller and pilot radio communication
at aerodrome control towers [13]. ASR together with deep-learning-based methods were
applied as safety monitoring function by translating the pilot–controller voice communi-
cations into texts, which were then converted to contextual data to be analyzed for flight
conformance verification, and potential conflict detection [14]. The Venture capital funded
project AcListant® [15] and AcListant®-Strips for ATC approach areas focused on ASR with
the aim to significantly reduce controllers’ workload [1] and increase ATM efficiency [15].
The exercise of DLR and Austro Control of SESAR2020 project PJ.10-W2-96-ASR, described
in detail in Section 3.4, has the same objectives, using Vienna approach and not Dusseldorf
as validation airspace. The main difference is that the focus of project PJ.10-W2-96 is on
investigating safety aspects regarding the number of erroneous recognitions of ASR that
are undetected by the ATCO [5]. These results are summarized in Section 4.2.2.

The STARFiSH (Safety and Artificial Intelligence Speech Recognition) [16] project
integrated AI-based speech recognition into an A-SMGCS (Advanced Surface Movement
Guidance and Control System) for ground traffic control and monitoring at Frankfurt
Airport. The joint application of ASR and A-SMGCS recognized the instructions given by
apron controllers to pilots, extracted the commands contained therein and integrated the
outputs to the user interface of the A-SMGCS. An additional safety net for AI applications
in ASR is intended to ensure that errors in AI-based speech recognition do not have any
negative effects on the overall system [16]. The benefits of callsign recognition from flight
crew utterances and highlighting the callsign at an en-route CWP HMI were investigated
in [4]. The study demonstrated feasibility of the integrated ASR system for the identification
of callsigns from flight crew utterances which provide benefits in terms of workload and
situational awareness. The papers also highlighted the importance of further work on
recognition and timeliness of outputs.

Incorporating ASR into ATC specifically as a safety enhancing feature has been re-
searched by various practitioners, especially in conjunction with integrating ASR into
various other safety features contained in an ATM system such as conformance monitoring
and trajectory prediction. Karlsson et al. previously hypothesized in 1990 on this basis
that the introduction of ASR technology into ATC could result in a reduced occurrence of
human-generated errors enabling in turn increased safety of the overall system [17]. More
recently in 2023, the use of ASR as a safety enhancing application in ATC operations was
investigated and noted that the solutions investigated can improve the safety of ATC oper-
ations and can contribute to the reduction in ATCO workload [18]. Zhou et al. argued that
ASR represents a gateway between the ATM system and the ATCO in converting speech
signal to text inputs and that after spoken instruction understanding (SIU) is applied to the
converted text the output information can be used to support safety-critical applications
(SCA), enabling safety and reducing possible human errors [19]. The European Union
Aviation Safety Agency recently developed a roadmap for the approval and deployment
of safety-related AI systems for end-user support (pilots and ATCOs) [20]. In following
guidance [21], the process of safety assurance for AI level 1 (assistance to human) and AI
level 2 (human machine teaming) is developed with the further classification for different
level of safety analysis depending on the AI application level. According to the guidance,
AI-supported ASR application can be classified as AI Level 2A: human/machine teaming
representing human and AI-based system cooperation. The work presented in this paper
did not explicitly address the trustworthiness of AI application as the elements of the safety
analysis. This paper concentrates on the initial part of safety assessment in the design
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phase for such an application. The safety assessment must be continued “in-service” via a
data-driven AI safety risk assessment based on operational data and occurrences.

3. Materials and Methods

The validated applications demonstrated ASR capability to effectively support AT-
COs by showing evidence appropriate at the pre-industrial feasibility level. This section
describes the safety assessment process conducted in accordance with the SESAR Safety
Reference Material [3] and its guidance [22] at the design phase to ensure that the proposed
implementation of ASR in ATM operations is capable in satisfying the performance require-
ments as stipulated by European regulation [2]. The SESAR safety assessment process has
to demonstrate that the design is safe by using two different approaches:

1. A success approach, in which the effectiveness of the new concepts and technologies is
assessed, when they are working as intended, i.e., how much the pre-existing risks
that are inherent and already present in aviation will be reduced by the changes to
the ATM system under assessment, i.e., defining the positive contribution to aviation
safety that the ATM changes under assessment may deliver in the absence of failure.

2. A failure approach, in which the ATM system generated risks, induced by the ATM
changes under assessment are evaluated. This approach defines the negative contri-
bution to the risk of an accident that the ATM changes under assessment may induce
in the event of failure(s), however caused.

This paper focuses on the process of deriving the performance requirements for the
failure approach based on identification of potential hazards presented by the introduction
of ASR, thus ensuring safe implementation of ASR technology to ATC operations.

3.1. Selected Use Cases

The safety assessment covered TRL 5 system development phase, representing technol-
ogy validated in relevant operational environment, and TRL 6—technology demonstrated
in relevant operational environment. For this reason, the operational use cases were se-
lected by a group of subject matter experts from the field who represent the possible users
of the technology. The scope of the assessment described was limited to the following
uses cases:

3.1.1. Use Case “Highlight of Callsigns (Aircraft Identifier) on the CWP Based on the
Recognition of Pilot Voice Communications”

In the scope of this use case, the pilot’s voice signal was extracted, processed by ASR
for callsign recognition and further verified against contextual flight plan data. This type of
use of ASR technology supports the ATCO by identifying new flights entering the sector
and making initial contact on the ATC VHF channel, and flight crews requesting actions
from ATCOs, e.g., trajectory change, flight level change or information.

3.1.2. Use Case “Highlight of Callsigns on the CWP Based on the Recognition of ATCO
Voice Communications”

The ATCO voice signal was extracted, processed by ASR for callsign recognition
and further verified against contextual flight plan data. This type of ASR application,
where the aircraft callsign is highlighted and is based on the recognition of ATCO voice
communications, provides a safety check to the ATCO who will be able to detect, whether
there is a difference between the aircraft callsign mentioned and the flight radar data label
on the CWP HMI, for which commands are being input.

3.1.3. Use Case “Annotation of ATCO Commands”

The ATCO voice command was extracted, processed, and verified against contex-
tual data to provide the annotation of a specific command on the CWP HMI. This type
of ASR application, where annotation of given commands is made available to ATCOs
for consultation, enables increased situational awareness and provides a safety check of
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clearances and instructions given to flights. This use case is an intermediate step prior to
the semi-automatic/automatic input of commands in the CWP using ASR.

3.1.4. Use Case “Pre-Filling of Commands in the CWP”

The recognized (and validated) commands were presented to the ATCOs together
with the command values in the CWP. ATCOs were able to accept, reject or correct the
commands.

Two validation exercises were selected, which jointly address all of the use cases
noted above:

1. The exercise performed by CRIDA, Indra and ENAIRE places emphasis on a very
low callsign recognition error rate (approx. 0%). Consequently, a lower callsign
recognition rate (between 50% and 85%) is foreseen. This exercise will be referred to
as the Callsign Highlighting exercise in the rest of the text.

2. The second exercise performed by DLR and Austro Control attempts to identify a
compromise between low callsign recognition error rate (<1%) and acceptable callsign
recognition rate (>97%). This exercise will be referred to as the Radar Label Maintenance
exercise in the rest of the text.

Both approaches are different with regard to solving the callsign highlighting use
cases and are, therefore, very interesting from the perspective of safety considerations.
More details of the two validation exercises are provided in Section 3.3 for the Callsign
Highlighting exercise and in Section 3.4 for the Radar Label Maintenance exercise. The safety
assessment methodology is addressed before the exercise descriptions.

3.2. Safety Assessment Methodology

The focus of this paper is to present the “failure” part of the assessment, thus the
contribution of ASR to the risk of an accident that the ATM changes under assessment
may induce in the event of failure(s). The process starts with a hazard identification based
on the analysis of the use cases using the walk-through technique supported by sequence
diagrams as shown in Figure 1.
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Sequence diagrams were produced and analyzed for each use case. The sequence
diagrams were used for the walkthrough with subject matter experts to identify potential
hazards, meaning each situation that could trigger the unsafe situation. The identified
hazards were further assessed according to Functional Hazard Assessment as per Safety
Assessment Methodology [23] by applying the following steps:

1. Identification of hazards’ effects on operations, including the effect on aircraft operations.
2. Assessment of the severity of each hazard effect.
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3. Specification of target performance (safety objectives), i.e., determination of the maxi-
mum tolerable frequency of the hazard’s occurrence.

A top-down causal analysis was performed for each functional hazard, their causes
and associated mitigations. The identified mitigations refer to preventive mitigations for a
functional hazard, which either prevent a basic cause from occurring or protect against the
propagation of the basic cause effect up to the functionality hazard occurrence.

A complementary bottom-up analysis of the failure modes of the ASR elements/element-
to-element interfaces and of their effects was performed in order to determine potential common
cause failures.

3.3. Callsign Highlighting Exercise with Focus on Low Callsign Recognition Error Rates

ENAIRE, Indra and CRIDA, conducted an exercise to validate the performance of the
pre-industrial ASR prototype covering the following use cases [4]:

• Use Case 1. Highlight of callsigns . . . based on the recognition of pilot voice,
• Use Case 2. Highlight of callsigns . . . based on the recognition of ATCO voice,
• Use Case 3. Annotation of ATCO commands.

This validation exercise used two complementary approaches aiming at providing
evidence of ASR applications’ performance by providing the following outputs:

1. Collection of subjective operational feedback from ATCOs gathered by means of
questionnaires, debriefings and observations. This was achieved through a real-time
human-in-the-loop simulation.

2. Collection of statistically significant objective data regarding ASR performance. This
was achieved through the analysis of operational recordings of real-life communica-
tions between ATCOs and flight crew. Audios from different Spanish en-route sectors
were processed by the ASR system to obtain the accuracy on callsign identification
and command annotation.

The human-in-the-loop validation exercise simulated two en-route sectors of Madrid
Flight information Region (FIR) during the nighttime. The sectors are presented in Figure 2
obtained from Enaire’s Aeronautical Information web application [24], each sector in a
different color. The sectors are quite wide and have several entry points where flight crew
performs their first call (related to use case 1). There are very different traffic flows that
require different type of control commands (related to use case 3) and facilitate the creation
of situations where the traffic is focused in one area or dispersed along the whole sector
(related to use cases 1 and 2).
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The validation exercises were performed in an integrated sector, where one ATCO
performs both the executive controller and planning controller roles as is typical in many
ACCs during the nighttime. One simulation pilot was assigned for each sector [4]. The
exercises were designed with medium-to-high traffic load. A total of two ATCOs from
Enaire took part in the simulations in November 2021.

To overcome the limitations of the validation activity (the low number of scheduled
runs and participating ATCOs and (simulation) pilots, and the locations specificity to
the validated operational environment) a statistical approach was applied. The statistical
approach included the analysis of operational recordings from different types of sectors
and several actors, both controllers and flight crew. The operational data also serve as a
reference to compare performance between laboratory data with real-life data.

During the real-time simulation, it was possible to enable only ATCO speech recogni-
tion, pilot speech recognition or both. The different ASR functionalities (callsign recogni-
tion and command history window) were activated or deactivated to assess the three use
cases separately.

Communications between ATCO and pilot were performed using COMETA, the
communication system that ENAIRE has deployed in Spanish ATC units. COMETA uses
VoIP and the version used for the exercise was the latest available.

When a radio voice communication is performed the ASR is triggered. The ASR
system identifies the callsign in the communication and highlights the corresponding
aircraft radar track symbol on the CWP. The ASR also extracts relevant information from
ATCO utterances and proceeds to annotate them in a separate window that the ATCO is
able to consult.

Context information, i.e., information regarding flight plans and their updates, were
sent to the ASR prototype by the simulation platform to reduce callsign recognition error
rate. Only callsigns that were completely recognized and present in the flight plans were
displayed to the ATCOs, i.e., wrong or partial callsign recognition was considered as not
identified, and no flight was highlighted on the screen.

As presented in Figure 3, the callsign recognition is indicated by displaying a white
circle around the radar track symbol. The circle flashed for five seconds before disappearing.
The functionality allowed highlighting several aircraft at the same time by flashing the
indicator around their respective radar track symbols simultaneously.
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Figure 3. Callsign illumination by flashing.

The annotation window, shown in Figure 4, contains information regarding the com-
mands provided by the ATCO. It includes the callsign of the addressed aircraft, the issuing
time, the command annotation in accordance with the standard agreed between the SESAR
partners, and an action column. The text in the action column and the colors in the anno-
tation window are coherent with other elements in the CWP. As presented in the figure,
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if a callsign was not identified by the ASR system, it appeared as NO_IND but the tran-
scription was available in the text field. An annotation window per flight, where only the
communications exchanged with the selected flight appeared, was also available.
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Figure 4. Annotation window with callsign, time, and command content.

The annotation window was displayed only for consultation. ATCOs did not update
the information displayed but were able to navigate and sort it.

A mixture of subjective and objective data was used to assess the achievement of the
objectives of the exercise. Subjective data were collected via:

• Individual questionnaires: standard and specific questionnaires were developed to
assess the validation objectives. The questionnaires were agreed with the subject
matter experts participating in dedicated Safety and Human performance workshops.

• Debriefing sessions: after each simulation run the findings, i.e., opportunities, dif-
ficulties, general findings observed during the exercise were discussed among all
participants (operational and simulation staff).

• Over the shoulder observations: direct and non-intrusive over-the-shoulder observa-
tion were carried out by human factors expert, during the runs. This non-intrusive
observation had the purpose of providing detailed, complete and reliable information
on the way the activity is carried out, especially, if further commented and discussed
with the observed users during the debriefing.

Additionally, objective data were obtained from system data recorded during each
session by the replay and post-analysis tools. These data contained information on callsign
transcription and command annotation generated during the simulation. Data on system
reaction times were also recorded. Further quantitative data were obtained from the
analysis of operational recordings. The recognized callsigns were compared to the correct
callsigns resulting from manual annotations (gold standard annotations).

Two statistical analyses of the outputs were performed: The first one used objective
data collected from the real-time simulation (RTS) screen and audio recordings. The second
one used operational recordings from different Spanish en-route ATC sectors. These sectors
were selected taking into account their complementary characteristics that provided a wide
sample of technical (i.e., signal-to-noise ratio, native speakers origin) and operational (i.e.,
type of commands) characteristics. The statistical analyses were obtained by manually
transcribing the recordings, creating the callsign and command annotation standards, and
then comparing them against the ASR outcome.

Further details can be found in the project final report [25].

3.4. Radar Label Maintenance Exercise with Focus on High Callsign Recognition Rates

DLR together with Austro Control conducted a real-time human-in-the-loop simula-
tion at DLR’s premises in Braunschweig to validate the performance of the pre-industrial
ASR prototype covering the following use cases:

• Use Case 2. Highlight of callsigns . . . based on the recognition of ATCO voice,
• Use Case 3. Annotation of ATCO commands,
• Use Case 4. Pre-filling of commands in the CWP.

The focus of the simulation was to quantify the benefits of ASR with respect to
operational safety and ATCO workload. The traffic scenarios consider inbound flights to
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Vienna airport runway 34. Departures and overflights were not modelled. The ATCO,
however, was responsible for the four adjacent approach sectors BALAD, MABOD, PESAT
and NERDU plus the terminal maneuvering area (TMA) including the landing clearance
roughly 6 to 10 miles before touch down, see Figure 5 taken from [5].
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observations. Objective data regarding system performance were recorded (e.g., flown 
trajectory length and command recognition rates).  

Figure 5. Approach chart of Vienna TMA with the four sectors BALAD, NERDU, PESAT, MABOD
around the four metering fixes with the same names, taken from [5].

Simulation pilots managed flights and interacted with the ATCO via voice commu-
nication. Subjective feedback was gathered by means of questionnaires, debriefings and
observations. Objective data regarding system performance were recorded (e.g., flown
trajectory length and command recognition rates).

Two different scenarios were created: a medium-density traffic scenario with 30 ar-
riving aircraft per hour and a heavy-density traffic scenario with 42 arriving aircraft per
hour. A total of 12 ATCOs from Austro Control took part in the simulations lasting from
September to November 2022.

In the baseline scenario, the ATCO was not supported by ASR, but was working and
inputting the various commands manually using the current operating method consisting
of mouse inputs. The ATCO had to click on one of the nine underlined data fields of the
radar labels shown in Figure 6, taken from [5]. The click opens a drop-down menu and the
ATCO needs to manually enter the given clearance values, e.g., for altitude, speed, heading,
waypoint, etc.
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In solution runs, the values of the ATCO commands are extracted from the radio
telephony utterance by ASR and are automatically input to the radar label cells appearing
in purple color. The right part in Figure 6 shows the appearance when a flight level of 120,
a heading of 110 and a descent rate of 1000 feet per minute or greater were extracted by
the ASR. The dotted line “—” in waypoint field means that a recognized heading value
overwrites a previously recognized waypoint value. Thus, the ATCO only needs to check
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and confirm the automatically generated input with a mouse click on the green checkmark
in the first radar label line, or alternatively correct any values in cases of misrecognition.
Accepted cell values turned into light green as soon as the ATCO accepted them. The
command values are automatically accepted after ten seconds, if the ATCO does not reject
or correct them. More details with respect to the HMI design used are described in [5].

Each ATCO participated in four simulation runs of 35 min duration each. Two runs
were conducted in baseline mode and two in solution mode with ASR support, so that
all combinations of heavy and medium traffic with baseline and solution modes were
simulated by each ATCO. To compensate for sequence effects, i.e., training effects, five
ATCOs started with the baseline run. In addition, seven ATCOs started with the solution
runs. After the baseline run, two solution runs followed or two baseline runs followed,
if the ATCO started with the solution runs. Nevertheless, there were sequence effects. A
technique to compensate for the sequence effects by subtracting or adding the mean value
of all first, second, third and fourth simulation runs was implemented [5].

After each simulation run, the ATCOs filled out several questionnaires, and after the
last validation exercise the ATCOs completed an additional final questionnaire. An informal
semi-structured debriefing with the ATCOs followed the final validation simulation runs.
Table 1 shows the 10 questions, which are safety related and taken from [5].

Table 1. Questions gathering feedback related to safety issues.

Question ID Content

1 How insecure, discouraged, irritated, stressed, and annoyed were you?
(Stress annoyed)

2 What was your peak workload? (Peak workload)

3 In the previous run I . . . started to focus on a single problem or a specific aircraft.
(Single aircraft)

4 In the previous run there . . . was a risk of forgetting something important (such
as inputting the spoken command values into the labels). (Risk to Forget)

5 In the previous run, how much effort did it take to evaluate conflict resolution
options against the traffic situation and conditions? (Conflict resolution)

6 In the previous run, how much effort did it take to evaluate the consequences of
a plan? (Consequences)

7 In the previous working period, I felt that . . . the system was reliable. (Reliable)

8 In the previous working period, I felt that . . . I was confident when working
with the system. (Confidence)

9 I . . . found the system unnecessarily complex. (Complexity)

10
Please read the descriptors and score your overall level of user acceptance
experienced during the run. Please check the appropriate number. (User
Acceptance)

The results from the two validation exercises with focus on safety are presented in the
next section.

4. Results

The first part of this section provides the hazards derived from the assessment and the
requirements to mitigate the hazards. The second part describes two validation activities
conducted to demonstrate the completeness of the design.
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4.1. Hazard, Severity and Corresponding Design Requirements

A total of eight functional hazards (FHz) were identified based on the analysis of the
use cases.

1. FHz#01: Significant delay in ASR callsign/command recognition and/or display
(relevant for use cases 3 and 4)

2. FHz#02: ASR fails to identify an aircraft callsign from pilot’s utterance, i.e., no aircraft
is highlighted (relevant for use case 1)

3. FHz#03: ASR fails to identify an aircraft callsign from controller’s utterance, i.e., no
aircraft is highlighted (relevant for use case 2)

4. FHz#04: ASR erroneously identifies an aircraft callsign from pilot’s utterance, i.e., the
wrong aircraft is highlighted (relevant for use case 1)

5. FHz#05: ASR erroneously identifies an aircraft callsign from controller’s utterance,
i.e., the wrong aircraft is highlighted (relevant for use case 2)

6. FHz#06: ASR fails to identify a command from controller’s utterance, i.e., no given
command is shown to the ATCO (relevant for use cases 3, 4)

7. FHz#07: ASR erroneously identifies a command from controller’s utterance, i.e., a
wrong command or a command never given is shown to the ATCO (relevant for use
cases 3, 4)

8. FHz#08: ASR recognizes an incorrect aircraft callsign, and the (correct or wrong)
command is displayed for the incorrect flight in the CWP HMI (relevant for all
use cases)

Safety assessment requires that the operational effects of identified hazards are clas-
sified in accordance with a Risk Classification Scheme (RSC) based on the severity of
the operational effect the hazard may trigger [22,26]. The RSC classifies the hazards and
provides the safety target, i.e., the maximum tolerable frequency (MToF) for each hazard’s
occurrence per flight hour in a specific unit.

• Severity Class 1: Accidents (max safety target with a probability of less than 10−9, i.e.,
one catastrophic accident per one billion flight hours attributable to ATM.

• Severity Class 2: Serious Incidents (max safety target with a probability of less
than 10−6)

• Severity Class 3: Major Incidents (max safety target with probability of less than 10−5)
• Severity Class 4: Significant Incidents (max safety target with a probability of less

than 10−3)
• Severity Class 5: No Immediate Effect on Safety (no target).

Table 2 provides a list of the identified hazards with their causes, the assessed opera-
tional effect, and mitigations considered in defining the operational effect protecting against
the functional hazard’s effects propagation. The severity classification for each hazard was
derived during a workshop with three ATCOs, concept designers and safety experts. The
severity of the hazard determines the tolerable frequency of hazard occurrence.

As demonstrated in Table 1, based on the discussion with ATCOs participating in the
session, it was recognized that the impacts of the ASR functional hazards are not significant
from a safety perspective according to the Risk Classification Scheme, (RCS) [26]. Therefore,
the requirements set as a mitigation do not require the safety target as such derived from
the RCS and can be derived from operational needs, ensuring performance acceptable for
ATCOs and ensuring no degradation in the execution of the ATCOs’ tasks.

The impact of never attaining a perfect ASR may lead to situations, which are also
present in the current operating method and working procedures impacting human perfor-
mance negatively, i.e., increased workload and decreased situational awareness. With the
support of various tools already used in current operations (such as monitoring aids), these
events will in the current mode and with ASR support not escalate to safety relevant events.
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Table 2. Hazards’ causes, operational effect, possible mitigation and severity of hazards derived
during Functional Hazard Assessment workshop.

Functionality Hazard &
Severity

Potential Causes &
Operational Effect

Mitigations Protecting against
Propagation of Effects

FHz#01 Significant delay in ASR
callsign/command recognition
and/or display

No Immediate Effect on Safety

-Design issue
-ASR provides delayed output

If the use of ASR introduces delays in the usage of speech information
(display of inputs, identification of aircraft, etc.) this may cause the
ATCOs to focus on specific flight/area of the Area of Responsibility,
until they can verify that the action induced by ASR has been correctly
processed and displayed. This may have a negative impact on ATCO
situational awareness.

Contingency measure to switch
off ASR.

FHz#02 ASR fails to identify an
aircraft from pilot’s utterance—no
aircraft is highlighted

No Immediate Effect on Safety

-Pilot utters a non-understandable callsign or noise environment
-Pilot utters a legal and understandable callsign, but ASR fails to
recognize it.

If the pilot performs the radio call and the flight is not highlighted,
ATCO may have to scan the area of responsibility (AoR) to locate the
aircraft. However, if ASR functionality to highlight the callsign is
defined in the new operating method, there is a default expectation by
the ATCO that it is functional and assisting in locating aircraft, resulting
in minor workload increase and situational awareness reduction.

ATCO may have to scan the
Area of Responsibility to locate
the aircraft.
No difference to current
operating method.

FHz#03 ASR fails to identify an
aircraft from controller’s
utterance—no aircraft is highlighted

No Immediate Effect on Safety

-ATCO utters an illegal/non-understandable callsign
-ATCO utters a legal and understandable callsign, but ASR fails to
recognize it.

If ATCO performs the radio call, it is assumed the impact is minor,
because the ATCO’s attention is focused on the aircraft being called and
the impact is negligible.

No difference to current
operating method.

FHz#04 ASR erroneously identifies
an aircraft from pilot’s
utterance—wrong aircraft is
highlighted

No Immediate Effect on Safety

-If pilot performs the radio call and erroneous flight is highlighted, the
ATCO may focus on the highlighted aircraft and issue the clearance
intended for the calling aircraft to the wrong flight.
The difference to the current operating method is that while occasional
callsign confusion may occur between similar callsigns, now the ASR
system is enforcing the ATCO’s perception of issuing the clearance to
what is expected to be the correct flight. If the confusion is not clarified
through read-back and hear-back procedure or with the assistance of
the planning controller, issued clearance to the wrongly highlighted
aircraft may result in an unintended trajectory change. From a safety
perspective, this is not significantly different from the current operating
method, when ATCO enters a clearance into the radar label for the
wrong callsign.

If the confidence level of the
callsign recognition is not
sufficiently high, it is not
highlighted.
For lower confidence levels to
highlight with different color to
emphasize the uncertainty of
correct recognition.
If the erroneous recognition
persists, ATCO switches off the
ASR and continues working as
in today’s operations.

FHz#05 ASR erroneously identifies
an aircraft from controller’s
utterance—wrong aircraft is
highlighted.

No Immediate Effect on Safety

If ATCO performs the radio call and erroneous flight is highlighted, it is
assumed the impact is minor as the ATCO’s attention is on the aircraft
being called and the impact of erroneous highlight is negligible.

If the confidence level of the
callsign recognition is not
sufficiently high, it is not
highlighted.
For lower confidence levels to
highlight with different color to
emphasize the uncertainty of
correct recognition.

FHz#06 ASR fails to identify a
command from controller’s
utterance.

No Immediate Effect on Safety

-ATCO utters an illegal/non-understandable command
-ATCO utters a legal and understandable command, but ASR fails to
recognize it
The failure of ASR to identify a complete command force ATCO to
manually make the input. In such cases the negative impact on ATCO
workload and situational awareness is expected, as in the new
operating method there is a default expectation by the ATCO that ASR
is functional and assisting in inputting commands in the labels.

ATCO inputs
command manually.
If the failure of ASR to
recognize commands persists,
ATCO switches off the ASR and
continues working as in
today’s operations.
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Table 2. Cont.

Functionality Hazard &
Severity

Potential Causes &
Operational Effect

Mitigations Protecting against
Propagation of Effects

FHz#07 ASR erroneously identifies
a command from controller’s
utterance

No Immediate Effect on Safety

-ATCO utters an illegal/non-understandable command
-ATCO utters a legal and understandable command, but ASR recognizes
the incorrect command, and wrong command is displayed in the
CWP HMI.
In cases where inputs are provided but are erroneous, the ATCO will
have to recognize the error and change information already put into
the system.
Depending on the ATM system, some parts of correcting the clearance,
route change, etc., may require manipulation of the flight plan route
data to input the correction. In such cases the impact on ATCO
workload and potential disruption to the ATCO workflow may be
higher than in cases where only missing data need to be input to
complete the clearance.

ATCO corrects ASR input
manually for the
intended callsign.
If the failure of ASR to
recognize commands correctly
persists, ATCO switches off the
ASR and continues working as
in today’s operations.

FHz#08 ASR recognizes an incorrect
callsign, and the command is
displayed for the incorrect flight in
the CWP HMI

No Immediate Effect on Safety

ATCO utters a legal and understandable command, but ASR recognizes
an incorrect callsign, which is being considered by the system, and the
command is displayed for the incorrect flight in the CWP HMI
In cases where inputs are provided but are erroneous (i.e., command
input for wrong aircraft), the ATCO will have to recognize the error and
change information already put into the system.
If the error is not recognized by the controller, the contacted pilot will
nevertheless follow the clearance issued by controller on the frequency.
The erroneous input in the label of another aircraft will soon be detected
by clearance monitoring aids.

If ATCO recognizes the error,
he/she rejects and either repeats
the clearance or inputs it
manually directly into the label
of the correct aircraft radar label.
If ATCO does not recognize the
error, monitoring aids will
detect the discrepancy between
the flown trajectory and the
command inserted in the label
of the erroneous aircraft.

Considering that the hazards identified did not directly impact safety, the requirement
for design are derived from operational and functional needs. The following list of require-
ments was, therefore, developed as preventive mitigations for functional hazards. The
hazards were further analysed via top-down and bottom-up techniques with the support
of fault trees to identify all possible causes for the hazards to occur, and to limit the propa-
gation of the effects of hazards. The details of the derivation for the hazard are presented
in Appendix A: Top-down analysis and Appendix B: Bottom-up analysis. The full list of
the requirements can be found in the CORDIS portal of the European Commission [27]. To
facilitate understanding of the requirements, they are listed here divided into two subcate-
gories: those related to callsign recognition (as a mitigation for hazards FHz#02, FHz#03,
FHz#04, FHz#05 and FHz#08) and those related to command recognition (mitigation to
hazards FHz#01, FHz#02, FHz#06, FHz#07 and FHz#08):

4.1.1. Safety and Performance Requirements Concerning Callsign

ASR should send a recognized callsign to the cooperating ATC system, no later than
one second after the ATCO has ended the radio transmission.

• For 99.9% of the ATCO utterances (except callsign), the system shall be able to give
the output in less than 2 s after the ATCO ended the radio transmission.

• If the confidence level of the callsign recognition is not sufficiently high, it shall not be
highlighted. Confidence level corresponds to a plausibility value derived by ASR. If
the plausibility value is below a given threshold, the callsign is set to ‘not recognized’.

• The HMI shall highlight the track label or part of it (or the track symbol) after recog-
nizing the corresponding callsign.

4.1.2. Safety and Performance Requirements Concerning Commands

• The ASR shall recognize commands of different command categories (such as descend,
reduce, heading).

• The Command Recognition Rate of ASR for ATCOs should be higher than 85%.
• The Command Recognition Error Rate of ASR should be less than 2.5% for ATCOs.
• The Command Recognition Error Rate of ASR should be less than 5% for pilots.
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• The HMI should present the recognized (and validated) command types together with
the command values in the radar label.

• The HMI shall enable manual correction/update of automatically proposed command
value/type.

• The ASR system shall have no significant differences in the recognition rates of differ-
ent command types, if the command types are often used (e.g., more than 1% of the
time).

The set of proposed requirements satisfying “failure approach” enables achieving
sufficient assurances for safety in the design of the system. The next step of the assessment
consisted of demonstrating the evidence for the mitigation of each hazard and achievabil-
ity of the safety requirements in the validation activities: real time, (human-in-the-loop
simulations described in Sections 3.3 and 3.4) conducted in operationally representative en-
vironment. The evidence for each hazard was collected via objective metrics and subjective
feedback from the ATCOs as shown in Table 3.

Table 3. Specific metrics and measures for collecting evidence from demonstration activities.

Hazard Objective Metrics Subjective Feedback on the Statement

FHz#01 Significant delay in ASR command
recognition and/or display (all use cases). Timeliness (processing time)

Applicable to all hazards
The accuracy of the information provided by the
ASR system is adequate for the accomplishment of
operations.
Command Recognition Error Rate stays in the
acceptable limits.

The number and/or severity of errors resulting from
the introduction of the ASR system is within
tolerable limits, considering error type and
operational impact.

The level of ATCO’s situational awareness is not
reduced with the introduction of the ASR system
(ATCO is able to perceive and interpret task relevant
information and anticipate future events/actions).

The level of ATCO’s workload is maintained or
decreased with the introduction of the ASR system.

The number and/or severity of errors resulting from
the introduction of the ASR system is within
tolerable limits, considering error type and
operational impact.

FHz#02: ASR fails to identify an aircraft from pilot’s
utterance—no aircraft is highlighted (use case 1)

Pilot’s callsign recognition rate
(no callsign highlighted)

FHz#04: ASR erroneously identifies an aircraft from
pilot’s utterance—wrong aircraft is highlighted
(use case 1).

Pilot’s callsign recognition
error rate

FHz#03: ASR fails to identify an aircraft from
controller’s utterance—no aircraft is highlighted
(use case 2).

Controller’s callsign recognition
rate (no callsign highlighted)
Controller’s callsign recognition
error rate (wrong callsign
highlighted)

FHz#05: ASR erroneously identifies an aircraft from
controller’s utterance—wrong aircraft is highlighted
(use case 2).

Controller’s callsign recognition
rate (no callsign highlighted)
Controller’s callsign recognition
error rate (wrong callsign
highlighted)

FHz#06: ASR fails to identify a command from
controller’s utterance (use case 3, 4).

Controller’s command
recognition rate

FHz#07: ASR erroneously identifies a command
from controller’s utterance (use case 3 and 4)

Controller’s command
recognition error rate

FHz#08: ASR recognizes an incorrect callsign, and
the command is displayed for the incorrect flight in
the CWP HMI (use case 3, 4)

Controller’s callsign recognition
error rate

4.2. Results of the Validation Activities

The results of the two real-time human-in-the-loop simulations described in
Sections 3.3 and 3.4 are presented in the following two subsections.

4.2.1. Validation Activity “Callsign Highlighting”
Evidence Based on the Objective Metrics

Table 4 presents the total number of callsigns present in the simulation audio logs
and the number of callsigns that were correctly detected by the ASR. The percentage of
correctly detected callsigns is higher for ATCOs than for flight crew in both cases as the
algorithm is optimized for the ATCO locutions.
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Table 4. Callsign recognition rates for ATCOs and Flight Crew.

ATCO Flight Crew

Analysis Type N◦ of Callsigns N◦ Callsigns
Detected Percentage N◦ of Callsigns N◦ Callsigns

Detected Percentage

RTS recordings 859 721 84% 457 687 67%

Operational recordings 143 127 87% 158 77 49%

Regarding the comparison between simulation and operational recordings, the per-
centage for ATCOs are similar but the percentage for flight crew is better in the simulation.
This was already expected as the quality of the recording (signal-to-noise ratio) is better
in the simulation and the accent (mother tongue) of the simulation pilots is unique (Span-
ish), while the one from the operational recordings is very diverse with 29 airlines from
18 different countries.

No callsign was wrongly recognized as only complete callsigns were detected. Feed-
back from ATCOs indicated that they would like to have higher recognition rates even if
some callsigns were incorrectly detected and highlighted. The error allowance is something
to be further investigated in follow-up research.

Table 5 presents the number of commands that were present/detected and the call-
sign + command that were correctly detected for each analysis. Only commands that fall
within the five categories, for which the prototype was optimized, are presented. There
were several other commands that ATCOs used during the simulation such as squawk
change, standard terminal arrival route (STAR) assignment, and information (traffic infor-
mation, barometric pressure setting). In the first column “Only Command Recognition”,
only the type of the command to classify whether the command was detected or not are
considered. In the last three columns “Callsign + Command Recognition”, the command
type plus the callsign must be correctly extracted to count as a detected command. The
results show that the lower callsign recognition rate resulting from the very low callsign
error rate also results in a lower command recognition rate, if both callsign and command
type must be correct.

Table 5. Detected command types, when considering only command type.

Only Command Recognition Callsign + Command Recognition

Analysis Type Commands Detected Commands % Commands Detected Callsign + Commands %

RTS recordings 695 619 89% 695 523 75%

Operational recordings 182 167 92% 182 146 80%

The performance for operational data is better than for RTS recordings. There is a
3% difference between the RTS and the operational recognition percentages regarding
command recognition, and a 5% difference in callsign and command recognition percent-
ages. During the exercise, the participating ATCOs were encouraged to test the recognition
system. They thus issued longer, and more complex authorizations than usually issued
in operational environments. This together with the fact that the ASR prototype was
trained and optimized using operational communications explains the difference between
both percentages.

If not only the command type, but also the information contained in the command are
considered (i.e., values, units, qualifiers), the extraction performance is lower, as shown in
Table 6.
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Table 6. Detected commands, i.e., command, when callsign plus command information, i.e., values,
units, qualifiers are considered.

Complete Command Recognition Callsign + Complete Command Recognition

Analysis Type Commands Detected
Commands % Commands Detected

Commands %

RTS recordings 695 498 72% 695 416 60%

Evidence Based on Subjective Feedback

Accuracy of ASR was collected through tailor-made questionnaires, debriefings, and
data logs. The ATCO feedback was that the tool that needed improvement in the recognition
rates to be able to effectively support them in the execution of their tasks. ATCOs indicated
that they would prefer some occasional false positive callsign recognized if that would
mean higher recognition rates.

Timeliness was collected through tailor-made questionnaires, debriefings, and data
logs. Data logs indicated that when the callsigns were located at the end of an utterance the
radar track and command information was presented in 0.9 s, but when it was located at
the beginning of a sentence it took up to 3.0 s. Controllers subjective feedback indicated that
timeliness was rated as adequate for the callsigns at the end of the utterance but inadequate
when the callsign was at the begging of the utterance.

ATCOs’ situational awareness, measured with SASHA [28], slightly improved with
the use of ASR (score 4.0 in the reference questionnaire and 4.4 in the solution scenario).
During the debriefings, ATCOs stated that situational awareness was improved but they
considered that the ASR recognition rate was not high enough to allow them to completely
confide and exploit the tool. They consider that higher callsign recognition rates would
further improve their situational awareness.

ATCO workload was collected through Nasa-TLX [29] questionnaire, tailor-made ques-
tionnaires, and debriefings. The Nasa-TLX scored 9.1 (out of 20) for the baseline scenario
and 7.9 (out of 20) for the solution scenario questionnaire. The tailor-made questionnaire
and debriefings indicated that workload slightly decreased in the solution scenario.

4.2.2. Validation Activity 2: Radar Label Maintenance
Evidence Based on the Objective Metrics

The validation activities were performed between September 2022 and November
2022 as described in Section 3.4.

Table 7 provides the speech recognition and understanding performance taken from [5].
A word error rate (WER) of 3.1% was achieved, i.e., only every 33rd word was wrongly
recognized. This is extremely good considering that humans usually achieve a WER of 4 to
11%, depending on the noise level and the option to listen more than once [30].

Table 7. Performance at the semantic level quantified as recognition and error rates.

Level of Evaluation WER Cmd-Recog-Rate Cmd-Error-Rate Csgn-Recog-Rate Csgn-Error-Rate

Full Command
3.1%

92.1% 2.8%
97.8% 0.6%Only Label 92.5% 2.4%

These results are based on 118,800 manually transcribed words resulting in 17,100 commands from 8850 utterances.
The word error rate of the used speech recognizer is 3.1%.

Out of all the given commands, 92.1% were recognized and 2.8% were wrongly
recognized. The difference to 100% means rejections, i.e., nothing was recognized for this
command. A command is only correctly recognized, if the callsign of the command, the
command type (descend, reduce, heading. . .), the values, the unit, the qualifier (left, right,
etc.) and the conditions are all correct. Therefore, the callsign recognition rate (column
“Csgn-Recog-Rate”) is always better than the recognition rate of the total command. A
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callsign error rate of 0.6% in the last column corresponds to only one of 165 callsigns being
wrongly recognized. The last row “Only Label” shows the results when we do not consider
all 17,100 recognized commands, but only the 12,600 commands which are also shown in
the radar label cells; e.g., a QNH or a squawk command are not shown in the radar label.

A recognition rate of 92.5% means that 7.5% of the given commands were not correctly
pre-filled by the ASR support functionality, i.e., the remaining 7.5% of the commands need
to be manually input by the ATCOs [5]. Only 50% of them were manually corrected or
inputted, respectively. Out of the 6400 commands given in the solution runs, 219, i.e.,
3.4% remained incorrect in the radar labels [5]. One can then pose the question whether
safety has now decreased, when pre-filling of radar label cells is supported by speech
recognition? It can be argued that no, the contrary is the case. Helmke et al. [5] also
showed that in the baseline runs without ASR support, 617 of the given 6320 radar cell
label relevant commands were not correct or remained missing in the radar label cells, i.e.,
11.6% versus 3.4%.

Evidence Based on the Subjective Metrics

Table 8 shows the mean values of the normalized answer differences of the 12 ATCOs
after having compensated for sequences effects. The answers were scaled into the interval
[1..10]; 1 meaning very good performance and 10 meaning bad performance. Negative
values in column “Diff” mean that the ATCO judged the safety aspect relevant to this
question higher with ASR than without ASR. The p-value is the statistical significance of a
performed t-test. The cells are shaded in green for 0% ≤ p-value < 5%, in light green for 5%
≤ p-value < 10%, and in yellow for no real evidence (absolute p-value ≥ 10%). There were
no single cases which would have provided evidence that working without ASR is safer
than with ASR, i.e., −10% ≤ p-value < 0% was not measured; see [5] for more details.

Table 8. Subjective feedback of ATCOs to safety-related questions.

Question Diff p-Value

Stress annoyed −0.16 34%
Peak workload −0.32 9.9%
Single aircraft 0.04 −41%
Risk to forget −0.64 0.7%

Conflict resolution −0.26 24%
Consequences 0.30 −21%

Reliable −0.24 30%
Confidence −1.59 1.1%
Complexity −1.98 2.0 × 10−4

User Acceptance −1.01 6.3%
Total −0.56 0.4%

It should be noted that the performance achieved was higher than the minimum perfor-
mance as defined by the safety/performance requirements [27]; the command recognition
rate was expected to be higher than 85%, whereas 92.5% was achieved. The command
Recognition Error Rate of ASR showed slightly better performance with 2.4% against 2.5%
set by the requirements.

The callsign recognition rate and error rate, although not quantified by the require-
ments, showed high performance. The subjective data based on the SHAPE Automation
Trust Index (SATI) [28] questionnaire confirmed that the level and quality of information
provided by the system (as displayed in the radar labels) was acceptable with an average
score of 8.8 on a scale from 1 to 10, i.e., 10 indicating the best rating option. With the support
of ASR, the value was 0.8 units better than without ASR support.

Timeliness of the information provided by the ASR.
The design recommendation set an expectation of 99.9% for the ATCO utterances,

except the callsign, being available in less than two seconds after the ATCO has released
the push-to-talk button.
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The ATCO subjective feedback demonstrated that the timeliness of ASR output in the
aircraft radar labels was considered adequate with an average score of 8.5 on a scale from
1 to 10, i.e., 10 indicating the best rating option.

Number and type (nature) of human errors.
ATCOs confirmed that ASR did not increase the potential for human errors with an

average score of 3 on a scale from 1 to 10, i.e., 10 indicating the worst rating option.
An objective analysis actually confirms that the number of errors in the radar label

cells, i.e., missing input, is much less if ATCOs are supported by ASR compared to entering
everything manually with a mouse (α < 10−7%).

Level of ATCO’s situational awareness.
ATCOs confirmed that their situational awareness is maintained at an acceptable level

with ASR with an average score of 8.9 on a scale from 1 to 10, i.e., 10 indicating the best
rating option.

ATCO’s workload.
The secondary validation objective regarding objective workload measurement showed

a statistically significant decrease (p-value = 0.3%) in the workload when ATCOs are sup-
ported by ASR. The ATCO-self-rated Instantaneous Self-Assessment (ISA) [31] score con-
firmed this with the same statistical significance (p-value = 3.1%, see Table IX in [5]). ATCOs
confirmed that ASR supported them in maintaining the workload at an acceptable level
with an average score of 7.9 on a scale from 1 to 10, i.e., 10 indicating the best rating option.
More meaningful, however, is the clicking time. In all baseline runs together, the ATCOs
need 12,700 s for maintaining the radar label contents. In the solution runs with ASR
support, only 405 s were needed, i.e., an improvement by a factor 31.

4.3. Limitations

The safety assessment performed as part of the SESAR2020 PJ.10-W2-96.2 ASR research
and development activities covers specific use cases in specific ATC environments and the
extrapolation of the results of the safety assessment may, therefore, not be applicable to all
operational environments and other ASR applications. The safety analysis described in this
paper focuses on the generic application of ASR technology in the pre-industrial phase.
Thus, the research results achieved may not be fully transferable to live operations and any
local implementation requires further investigation to satisfy the safety requirements as
defined in relevant regulation and/or the local competent authority. The results achieved in
these validations did not contain a long-term assessment of ASR functionality and potential
impacts to safety thereof. Likewise, the impact of external factors such as background noise,
various ATCO accents, and radio transmission quality and interference were not assessed
beyond their possible occurrence in the research environment. Implementation of ASR
capabilities may introduce the ATM system to new cyber security vulnerabilities which
would need to be evaluated through a local cyber security assessment. Further research
may be required for the implementation of ASR in different operational environments with
different traffic demands and complexity characteristics in ATC facilities applying different
ATM platforms. If ASR is used to supplement other safety tools present in an ATM system
(e.g., conformance monitoring, conflict detection) as suggested by some studies [17–19],
the safety considerations of ASR may require a detailed assessment of the various system
components’ interactions as opposed to the comparison between current and new operating
methods focused solely on availability of ASR as presented in this paper. Furthermore,
the acceptance of ASR by ATCOs—and subsequent impact on workload and situational
awareness—may vary between different organizational cultures and a holistic assessment
of ASR suitability to a specific environment would be required.

5. Discussion of Results

Overall, two different approaches for callsign extraction from spoken utterances have
been validated. The first one emphasized a very low error rate. The prize is a lower callsign
recognition rate. As a result, ATCOs reported preference for higher recognition rates with
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an occasional false positive callsign. This was addressed by the second approach trying a
compromise between low error rate and recognition rate. The analysis shows that it is up
to the user, i.e., ATCO, to decide what is preferred on a daily basis. An error rate of 0% will
not be possible, if a reasonable recognition rate is needed. Human actors do not achieve an
error rate of 0% either.

In general, ATCOs confirmed that they are able to perform their ATC tasks when
working with ASR support. The positive results achieved in situational awareness and
workload measurements in both validation exercises indicate the potential for further
benefits in ATCO performance in an operational environment. Timeliness of ASR output in
the first validation—radiotelephony utterances with aircraft callsign at the end only—was
found acceptable. In the second validation the timeliness was found to be adequate.
ATCOs from both validations confirmed that the application of ASR did not introduce any
additional risks for errors.

A recognition rate of 92.5% is still far away from 100%. It means, however, that the
time spent by the ATCOs manually updating the radar labels with clearance information
could be reduced by a factor of 31 from 12,700 s, i.e., 25% of the total simulation time,
without ASR support down to 405 s with ASR support. These numbers are based on a very
heavy traffic scenario, in which ATCO plus simulation pilots blocked the frequency for 70%
of the time.

The safety and hazard analysis of this research work has shown that no severe hazards
exist, when using ASR applications as callsign highlighting or pre-filling radar labels in
an operational environment. In heavy traffic scenarios, 3.4% of the given commands are
not correctly entered into the radar label cells, when ASR support is available. Without
ASR support the missing command rate increases to 11.6%. ASR support does not decrease
safety, but rather increases safety, when ATCO and ASR work as a team.

Research, therefore, should not concentrate on increasing command recognition rate
from 92.5% to 95% or to 99.9%, which is not expected to happen in the near future. Research
needs to focus on attention guidance, which gives hints to the ATCO, when something
might be wrong or missing in the radar labels. This can be done by integration of ASR with
other assistant systems already available in the ops room. Comparing downlinked mode-S
data with radar label cell entries can even further reduce the number of erroneous label
value entries.

6. Conclusions

In this article, we focused on demonstrating the safety of ASR application in ATC
operational environments.

The safety assessment showed that the eight ASR functional hazards have no sig-
nificant effect on overall ATM safety. Mitigations were derived from operational needs,
to ensure acceptable ATCO performance without degrading ATCO’s task execution. A
potential decrease in situational awareness or increase in workload in the case of insufficient
ASR performance were already present in the current operating method, but can be further
mitigated through the use of clearance monitoring tools to prevent the escalation of these
events to safety relevant occurrences.

The requirements developed as part of the safety assessment for the application of
ASR technology in ATM were achieved in operational environments reflecting real-life ATC
centers for en-route and approach control. The technical system, in terms of accuracy and
timeliness, outperformed expectations required by the design and associated targets. The
subjective feedback of ATCOs from two different validation setups was encouraging and
confirmed that ASR application not only generated benefits, but also showed to be feasible
for implementation in currently deployed ATM systems.
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Appendix A. Top-Down Analysis

The hazards were further analyzed by top-down technique with the support of fault
trees to identify all possible causes of the hazards to occur, and to limit the propagation
of the effects of hazards. The details of the derivation for the hazard are presented in this
appendix.

Cause ID (in Fault Tree) Cause Detailed Description Mitigation/Safety Requirement

FHz#01
Significant delay in ASR
callsign/command
recognition and/or display

-ASR provides
delayed output

One or more of the ASR
components is not
performing as expected and
causing the delay in the ASR
output display.

The ASR system should provide the functionality
to be switched off and switched on when necessary.
ASR should send a recognized callsign to the
cooperating ATC system when the controller ends
the radio transmission within a maximum of 1.0 s.
For 99.9% of the ATCO utterances except callsign
itself, the system shall be able to give the output in
less than two seconds after the ATCO has released
the push-to-talk button.
The ASR system shall have no significant
differences in the recognition rates of different
command types, if the command types are not
very seldom use (e.g., less than 1% of the time).

FHz#02
ASR fails to identify an
aircraft from pilot’s
utterance—no aircraft is
highlighted

-Pilot utters a
non-understandable
callsign
-Pilot utters a legal and
understandable callsign,
but ASR fails to recognize it

Pilot performs the radio call
and the flight is not
highlighted in the CWP HMI.

The HMI shall highlight the Track Label or part of
it (or the track symbol) after recognizing the
corresponding callsign.
If the confidence level of the callsign recognition is
not sufficiently high, it shall not be highlighted.

FHz#03
ASR fails to identify an
aircraft from controller’s
utterance—no aircraft is
highlighted

-ATCO utters an
illegal/non-
understandable callsign
-ATCO utters a legal and
understandable callsign,
but ASR fails to recognize it

ATCO performs the radio call
and the flight is not
highlighted in the CWP HMI.

The HMI shall highlight the Track Label or part of
it (or the track symbol) after recognizing the
corresponding callsign.
If the confidence level of the callsign recognition is
not sufficiently high, it shall not be highlighted.

FHz#04
ASR erroneously identifies
an aircraft from pilot’s
utterance—wrong aircraft is
highlighted

-Pilot utters a
non-understandable
callsign
Pilot utters a legal and
understandable callsign,
but ASR recognizes an
existing wrong callsign
-Pilot utters a legal and
understandable callsign,
but ASR recognizes a
wrong callsign not
matching to callsigns
considered by the system

ATCO focuses on the
highlighted aircraft and
issues the clearance intended
for the calling aircraft to the
wrong flight. If the ATCO
issues the clearance to the
wrongly highlighted aircraft,
it may result in an
unintended trajectory change.

The HMI shall highlight the Track Label or part of
it (or the track symbol) after recognizing the
corresponding callsign.
The Command Recognition Error Rate of ASR
should be less than 5% for pilots.

The Command Recognition Rate of ASR for pilots
should be higher than 75%.

If the confidence level of the callsign recognition is
not sufficiently high, it shall not be highlighted.
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Cause ID (in Fault Tree) Cause Detailed Description Mitigation/Safety Requirement

FHz#05
ASR erroneously identifies an
aircraft from controller’s
utterance—wrong aircraft is
highlighted

-ATCO utters an
illegal/non-
understandable callsign
-ATCO utters a legal and
understandable callsign,
but -ASR recognizes an
existing wrong callsign
-ATCO utters a legal and
understandable callsign,
but -ASR recognizes a
wrong callsign not
matching to callsigns
considered by the system

ATCO may get confused and
issue a wrong clearance. If the
ATCO issues the clearance to
the wrongly highlighted
aircraft, it may result in an
unintended trajectory change.

ATCOs will use standard phraseology as per
ICAO Doc.4444 [32].
The ASR shall recognize commands of different
command categories (such as descend, reduce,
heading).

The Command Recognition Error Rate of ASR
should be less than 2.5% for ATCOs.

The Command Recognition Rate of ASR of
ATCOs should be higher than 85%.

If the confidence level of the callsign recognition
is not sufficiently high, it shall not be
highlighted.

FHz#06
ASR fails to identify a
command from controller’s
utterance

-ATCO utters an
illegal/non-
understandable command
ATCO utters a legal and
understandable command,
but ASR fails to recognize it

ATCO manually makes the
input resulting in workflow
disruptions and workload
increase and situational
awareness reduction.

The HMI shall enable manual correction/update
of automatically proposed command value/type.

The HMI should present the recognized (and
validated) command types together with the
command values in the radar label.
The ASR system should provide the
functionality to be switched off and switched on
when necessary.

The Command Recognition Rate of ASR of
ATCOs should be higher than 85%.

FHz#07
ASR erroneously identifies a
command from controller’s
utterance

-ATCO utters an
illegal/non-
understandable command
-ATCO utters a legal and
understandable command,
but ASR recognizes an
incorrect callsign, which is
being considered by the
system, and the command
is displayed for the
incorrect flight in the CWP
HMI
-ATCO utters a legal and
understandable command,
but ASR recognizes the
incorrect command, and
wrong command is
displayed in the CWP HMI

ATCO will have to change
information already input
into the system.
Depending on the ATM
system, some parts of
correcting the clearance, route
change, etc., may require
manipulation of the FPL route
data to input the correction.

The HMI shall enable manual correction/update
of automatically proposed command value/type.

The HMI associated with ASR shall enable the
ATCO to reject recognized command values for
pre-filling radar label values by clicking on a
rejection button.

The ASR system should provide the
functionality to be switched off and switched on
when necessary.

The Command Recognition Error Rate of ASR
should be less than 2.5% for ATCOs.

FHz#08
ASR recognizes an incorrect
callsign, and the command is
displayed for the incorrect
flight in the CWP HMI

-ATCO utters an
illegal/non-
understandable callsign
followed by a command
ATCO utters a legal and
understandable callsign
and a command, but ASR
recognizes the incorrect
callsign

ATCO utters a legal and
understandable command,
but ASR recognizes an
incorrect callsign, which is
being considered by the
system, and the command is
displayed for the incorrect
flight in the CWP HMI.

The Command Recognition Error Rate of ASR
should be less than 2.5% for ATCOs.

The Command Recognition Rate of ASR of
ATCOs should be higher than 85%.

ATCO is supported by the clearance monitoring
aids as in today’s operations.
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Appendix B. Bottom-Up Analysis

In view of complementing the fault tree findings, the bottom-up analysis of the
failure modes of the ASR system elements and element interfaces and of their effects was
conducted to determine potential common cause failures and to allow a more in-depth
causal analysis of certain parts of the functional system design. The details of the derivation
for the hazard of the bottom-up analysis are presented in this appendix.

Technical System Element Failure Mode Effects Mitigation/Safety Requirement

Command Prediction

Fails to forecast possible future
controller commands.

Failure to receive external data
required for forecast of future
controller commands (external data
can be radar data, flight plan data,
weather data, airspace data, and
also historic data of those types).

The speech recognizer relies on the
input of the predicted commands.
Commands which are not predicted
(normally) cannot be recognized. So,
if command prediction accuracy is
worse than recognition accuracy
itself, the command prediction
functionality might have no benefits
for the recognition engine any more.

If ASR is used, the Command
Prediction Error Rate should not be
higher than 10% and also not be
higher than 50% of the opposite
command recognition rate (i.e.,
100% minus the command
recognition rate), without using a
plausibility checker.

Recognize Voice Words
Fails to analyze the voice flow and
to transform into a text string.
Does not receive the Voice Flow.

No callsign or command is
recognized by ASR and displayed
on the CWP HMI.

If ASR does not provide an input,
ATCO proceeds as in current
operations (manual input and with
no highlight of the callsign).

Apply Ontology and
Logical check

Fails to analyze the text string and
to transform into a set of predefined
commands to discard incoherent
commands.

The ASR output is erroneous and
incoherent.

The ASR shall recognize commands
of different command categories.
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